File size: 4,114 Bytes
c608946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cde3b4
c608946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cde3b4
 
 
c608946
 
 
 
 
 
 
 
9cde3b4
 
 
c608946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from PIL import Image
import numpy as np

import os

from tqdm import tqdm
from roma.utils import pose_auc
import cv2


class HpatchesHomogBenchmark:
    """Hpatches grid goes from [0,n-1] instead of [0.5,n-0.5]"""

    def __init__(self, dataset_path) -> None:
        seqs_dir = "hpatches-sequences-release"
        self.seqs_path = os.path.join(dataset_path, seqs_dir)
        self.seq_names = sorted(os.listdir(self.seqs_path))
        # Ignore seqs is same as LoFTR.
        self.ignore_seqs = set(
            [
                "i_contruction",
                "i_crownnight",
                "i_dc",
                "i_pencils",
                "i_whitebuilding",
                "v_artisans",
                "v_astronautis",
                "v_talent",
            ]
        )

    def convert_coordinates(self, im_A_coords, im_A_to_im_B, wq, hq, wsup, hsup):
        offset = 0.5  # Hpatches assumes that the center of the top-left pixel is at [0,0] (I think)
        im_A_coords = (
            np.stack(
                (
                    wq * (im_A_coords[..., 0] + 1) / 2,
                    hq * (im_A_coords[..., 1] + 1) / 2,
                ),
                axis=-1,
            )
            - offset
        )
        im_A_to_im_B = (
            np.stack(
                (
                    wsup * (im_A_to_im_B[..., 0] + 1) / 2,
                    hsup * (im_A_to_im_B[..., 1] + 1) / 2,
                ),
                axis=-1,
            )
            - offset
        )
        return im_A_coords, im_A_to_im_B

    def benchmark(self, model, model_name = None):
        n_matches = []
        homog_dists = []
        for seq_idx, seq_name in tqdm(
            enumerate(self.seq_names), total=len(self.seq_names)
        ):
            im_A_path = os.path.join(self.seqs_path, seq_name, "1.ppm")
            im_A = Image.open(im_A_path)
            w1, h1 = im_A.size
            for im_idx in range(2, 7):
                im_B_path = os.path.join(self.seqs_path, seq_name, f"{im_idx}.ppm")
                im_B = Image.open(im_B_path)
                w2, h2 = im_B.size
                H = np.loadtxt(
                    os.path.join(self.seqs_path, seq_name, "H_1_" + str(im_idx))
                )
                dense_matches, dense_certainty = model.match(
                    im_A_path, im_B_path
                )
                good_matches, _ = model.sample(dense_matches, dense_certainty, 5000)
                pos_a, pos_b = self.convert_coordinates(
                    good_matches[:, :2], good_matches[:, 2:], w1, h1, w2, h2
                )
                try:
                    H_pred, inliers = cv2.findHomography(
                        pos_a,
                        pos_b,
                        method = cv2.RANSAC,
                        confidence = 0.99999,
                        ransacReprojThreshold = 3 * min(w2, h2) / 480,
                    )
                except:
                    H_pred = None
                if H_pred is None:
                    H_pred = np.zeros((3, 3))
                    H_pred[2, 2] = 1.0
                corners = np.array(
                    [[0, 0, 1], [0, h1 - 1, 1], [w1 - 1, 0, 1], [w1 - 1, h1 - 1, 1]]
                )
                real_warped_corners = np.dot(corners, np.transpose(H))
                real_warped_corners = (
                    real_warped_corners[:, :2] / real_warped_corners[:, 2:]
                )
                warped_corners = np.dot(corners, np.transpose(H_pred))
                warped_corners = warped_corners[:, :2] / warped_corners[:, 2:]
                mean_dist = np.mean(
                    np.linalg.norm(real_warped_corners - warped_corners, axis=1)
                ) / (min(w2, h2) / 480.0)
                homog_dists.append(mean_dist)

        n_matches = np.array(n_matches)
        thresholds = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        auc = pose_auc(np.array(homog_dists), thresholds)
        return {
            "hpatches_homog_auc_3": auc[2],
            "hpatches_homog_auc_5": auc[4],
            "hpatches_homog_auc_10": auc[9],
        }