File size: 6,346 Bytes
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
 
 
358ab8f
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
 
 
 
 
 
358ab8f
10b4a5f
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
 
 
358ab8f
10b4a5f
 
358ab8f
 
10b4a5f
358ab8f
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
A two-view sparse feature matching pipeline.

This model contains sub-models for each step:
    feature extraction, feature matching, outlier filtering, pose estimation.
Each step is optional, and the features or matches can be provided as input.
Default: SuperPoint with nearest neighbor matching.

Convention for the matches: m0[i] is the index of the keypoint in image 1
that corresponds to the keypoint i in image 0. m0[i] = -1 if i is unmatched.
"""

import numpy as np
import torch

from .. import get_model
from .base_model import BaseModel


def keep_quadrant_kp_subset(keypoints, scores, descs, h, w):
    """Keep only keypoints in one of the four quadrant of the image."""
    h2, w2 = h // 2, w // 2
    w_x = np.random.choice([0, w2])
    w_y = np.random.choice([0, h2])
    valid_mask = (
        (keypoints[..., 0] >= w_x)
        & (keypoints[..., 0] < w_x + w2)
        & (keypoints[..., 1] >= w_y)
        & (keypoints[..., 1] < w_y + h2)
    )
    keypoints = keypoints[valid_mask][None]
    scores = scores[valid_mask][None]
    descs = descs.permute(0, 2, 1)[valid_mask].t()[None]
    return keypoints, scores, descs


def keep_random_kp_subset(keypoints, scores, descs, num_selected):
    """Keep a random subset of keypoints."""
    num_kp = keypoints.shape[1]
    selected_kp = torch.randperm(num_kp)[:num_selected]
    keypoints = keypoints[:, selected_kp]
    scores = scores[:, selected_kp]
    descs = descs[:, :, selected_kp]
    return keypoints, scores, descs


def keep_best_kp_subset(keypoints, scores, descs, num_selected):
    """Keep the top num_selected best keypoints."""
    sorted_indices = torch.sort(scores, dim=1)[1]
    selected_kp = sorted_indices[:, -num_selected:]
    keypoints = torch.gather(keypoints, 1, selected_kp[:, :, None].repeat(1, 1, 2))
    scores = torch.gather(scores, 1, selected_kp)
    descs = torch.gather(descs, 2, selected_kp[:, None].repeat(1, descs.shape[1], 1))
    return keypoints, scores, descs


class TwoViewPipeline(BaseModel):
    default_conf = {
        "extractor": {
            "name": "superpoint",
            "trainable": False,
        },
        "use_lines": False,
        "use_points": True,
        "randomize_num_kp": False,
        "detector": {"name": None},
        "descriptor": {"name": None},
        "matcher": {"name": "nearest_neighbor_matcher"},
        "filter": {"name": None},
        "solver": {"name": None},
        "ground_truth": {
            "from_pose_depth": False,
            "from_homography": False,
            "th_positive": 3,
            "th_negative": 5,
            "reward_positive": 1,
            "reward_negative": -0.25,
            "is_likelihood_soft": True,
            "p_random_occluders": 0,
            "n_line_sampled_pts": 50,
            "line_perp_dist_th": 5,
            "overlap_th": 0.2,
            "min_visibility_th": 0.5,
        },
    }
    required_data_keys = ["image0", "image1"]
    strict_conf = False  # need to pass new confs to children models
    components = ["extractor", "detector", "descriptor", "matcher", "filter", "solver"]

    def _init(self, conf):
        if conf.extractor.name:
            self.extractor = get_model(conf.extractor.name)(conf.extractor)
        else:
            if self.conf.detector.name:
                self.detector = get_model(conf.detector.name)(conf.detector)
            else:
                self.required_data_keys += ["keypoints0", "keypoints1"]
            if self.conf.descriptor.name:
                self.descriptor = get_model(conf.descriptor.name)(conf.descriptor)
            else:
                self.required_data_keys += ["descriptors0", "descriptors1"]

        if conf.matcher.name:
            self.matcher = get_model(conf.matcher.name)(conf.matcher)
        else:
            self.required_data_keys += ["matches0"]

        if conf.filter.name:
            self.filter = get_model(conf.filter.name)(conf.filter)

        if conf.solver.name:
            self.solver = get_model(conf.solver.name)(conf.solver)

    def _forward(self, data):
        def process_siamese(data, i):
            data_i = {k[:-1]: v for k, v in data.items() if k[-1] == i}
            if self.conf.extractor.name:
                pred_i = self.extractor(data_i)
            else:
                pred_i = {}
                if self.conf.detector.name:
                    pred_i = self.detector(data_i)
                else:
                    for k in [
                        "keypoints",
                        "keypoint_scores",
                        "descriptors",
                        "lines",
                        "line_scores",
                        "line_descriptors",
                        "valid_lines",
                    ]:
                        if k in data_i:
                            pred_i[k] = data_i[k]
                if self.conf.descriptor.name:
                    pred_i = {**pred_i, **self.descriptor({**data_i, **pred_i})}
            return pred_i

        pred0 = process_siamese(data, "0")
        pred1 = process_siamese(data, "1")

        pred = {
            **{k + "0": v for k, v in pred0.items()},
            **{k + "1": v for k, v in pred1.items()},
        }

        if self.conf.matcher.name:
            pred = {**pred, **self.matcher({**data, **pred})}

        if self.conf.filter.name:
            pred = {**pred, **self.filter({**data, **pred})}

        if self.conf.solver.name:
            pred = {**pred, **self.solver({**data, **pred})}

        return pred

    def loss(self, pred, data):
        losses = {}
        total = 0
        for k in self.components:
            if self.conf[k].name:
                try:
                    losses_ = getattr(self, k).loss(pred, {**pred, **data})
                except NotImplementedError:
                    continue
                losses = {**losses, **losses_}
                total = losses_["total"] + total
        return {**losses, "total": total}

    def metrics(self, pred, data):
        metrics = {}
        for k in self.components:
            if self.conf[k].name:
                try:
                    metrics_ = getattr(self, k).metrics(pred, {**pred, **data})
                except NotImplementedError:
                    continue
                metrics = {**metrics, **metrics_}
        return metrics