File size: 4,695 Bytes
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f269db9
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f269db9
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
2D visualization primitives based on Matplotlib.

1) Plot images with `plot_images`.
2) Call `plot_keypoints` or `plot_matches` any number of times.
3) Optionally: save a .png or .pdf plot (nice in papers!) with `save_plot`.
"""

import matplotlib
import matplotlib.pyplot as plt
import matplotlib.patheffects as path_effects
import numpy as np


def cm_RdGn(x):
    """Custom colormap: red (0) -> yellow (0.5) -> green (1)."""
    x = np.clip(x, 0, 1)[..., None] * 2
    c = x * np.array([[0, 1.0, 0]]) + (2 - x) * np.array([[1.0, 0, 0]])
    return np.clip(c, 0, 1)


def plot_images(
    imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True
):
    """Plot a set of images horizontally.
    Args:
        imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
        titles: a list of strings, as titles for each image.
        cmaps: colormaps for monochrome images.
        adaptive: whether the figure size should fit the image aspect ratios.
    """
    n = len(imgs)
    if not isinstance(cmaps, (list, tuple)):
        cmaps = [cmaps] * n

    if adaptive:
        ratios = [i.shape[1] / i.shape[0] for i in imgs]  # W / H
    else:
        ratios = [4 / 3] * n
    figsize = [sum(ratios) * 4.5, 4.5]
    fig, ax = plt.subplots(
        1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
    )
    if n == 1:
        ax = [ax]
    for i in range(n):
        ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
        ax[i].get_yaxis().set_ticks([])
        ax[i].get_xaxis().set_ticks([])
        ax[i].set_axis_off()
        for spine in ax[i].spines.values():  # remove frame
            spine.set_visible(False)
        if titles:
            ax[i].set_title(titles[i])
    fig.tight_layout(pad=pad)


def plot_keypoints(kpts, colors="lime", ps=4):
    """Plot keypoints for existing images.
    Args:
        kpts: list of ndarrays of size (N, 2).
        colors: string, or list of list of tuples (one for each keypoints).
        ps: size of the keypoints as float.
    """
    if not isinstance(colors, list):
        colors = [colors] * len(kpts)
    axes = plt.gcf().axes
    for a, k, c in zip(axes, kpts, colors):
        a.scatter(k[:, 0], k[:, 1], c=c, s=ps, linewidths=0)


def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, indices=(0, 1), a=1.0):
    """Plot matches for a pair of existing images.
    Args:
        kpts0, kpts1: corresponding keypoints of size (N, 2).
        color: color of each match, string or RGB tuple. Random if not given.
        lw: width of the lines.
        ps: size of the end points (no endpoint if ps=0)
        indices: indices of the images to draw the matches on.
        a: alpha opacity of the match lines.
    """
    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    ax0, ax1 = ax[indices[0]], ax[indices[1]]
    fig.canvas.draw()

    assert len(kpts0) == len(kpts1)
    if color is None:
        color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist()
    elif len(color) > 0 and not isinstance(color[0], (tuple, list)):
        color = [color] * len(kpts0)

    if lw > 0:
        # transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()
        fkpts0 = transFigure.transform(ax0.transData.transform(kpts0))
        fkpts1 = transFigure.transform(ax1.transData.transform(kpts1))
        fig.lines += [
            matplotlib.lines.Line2D(
                (fkpts0[i, 0], fkpts1[i, 0]),
                (fkpts0[i, 1], fkpts1[i, 1]),
                zorder=1,
                transform=fig.transFigure,
                c=color[i],
                linewidth=lw,
                alpha=a,
            )
            for i in range(len(kpts0))
        ]

    # freeze the axes to prevent the transform to change
    ax0.autoscale(enable=False)
    ax1.autoscale(enable=False)

    if ps > 0:
        ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
        ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)


def add_text(
    idx,
    text,
    pos=(0.01, 0.99),
    fs=15,
    color="w",
    lcolor="k",
    lwidth=2,
    ha="left",
    va="top",
):
    ax = plt.gcf().axes[idx]
    t = ax.text(
        *pos,
        text,
        fontsize=fs,
        ha=ha,
        va=va,
        color=color,
        transform=ax.transAxes
    )
    if lcolor is not None:
        t.set_path_effects(
            [
                path_effects.Stroke(linewidth=lwidth, foreground=lcolor),
                path_effects.Normal(),
            ]
        )


def save_plot(path, **kw):
    """Save the current figure without any white margin."""
    plt.savefig(path, bbox_inches="tight", pad_inches=0, **kw)