File size: 5,044 Bytes
dbf8b7e
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
dbf8b7e
 
358ab8f
dbf8b7e
 
 
 
358ab8f
 
 
dbf8b7e
358ab8f
 
 
 
dbf8b7e
 
 
 
358ab8f
 
 
 
dbf8b7e
 
358ab8f
dbf8b7e
358ab8f
dbf8b7e
 
 
358ab8f
dbf8b7e
 
358ab8f
dbf8b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
dbf8b7e
358ab8f
dbf8b7e
 
 
358ab8f
 
 
 
dbf8b7e
 
358ab8f
dbf8b7e
 
 
 
 
358ab8f
dbf8b7e
 
 
358ab8f
dbf8b7e
358ab8f
dbf8b7e
 
358ab8f
 
 
 
dbf8b7e
358ab8f
 
 
 
 
 
 
dbf8b7e
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
dbf8b7e
 
358ab8f
 
dbf8b7e
 
358ab8f
 
 
dbf8b7e
358ab8f
dbf8b7e
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
dbf8b7e
 
358ab8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from typing import Optional, Union
import torch
from torch import device
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as tvm
import gc


class ResNet50(nn.Module):
    def __init__(
        self,
        pretrained=False,
        high_res=False,
        weights=None,
        dilation=None,
        freeze_bn=True,
        anti_aliased=False,
        early_exit=False,
        amp=False,
    ) -> None:
        super().__init__()
        if dilation is None:
            dilation = [False, False, False]
        if anti_aliased:
            pass
        else:
            if weights is not None:
                self.net = tvm.resnet50(
                    weights=weights, replace_stride_with_dilation=dilation
                )
            else:
                self.net = tvm.resnet50(
                    pretrained=pretrained, replace_stride_with_dilation=dilation
                )

        self.high_res = high_res
        self.freeze_bn = freeze_bn
        self.early_exit = early_exit
        self.amp = amp
        if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
            self.amp_dtype = torch.bfloat16
        else:
            self.amp_dtype = torch.float16

    def forward(self, x, **kwargs):
        with torch.autocast("cuda", enabled=self.amp, dtype=self.amp_dtype):
            net = self.net
            feats = {1: x}
            x = net.conv1(x)
            x = net.bn1(x)
            x = net.relu(x)
            feats[2] = x
            x = net.maxpool(x)
            x = net.layer1(x)
            feats[4] = x
            x = net.layer2(x)
            feats[8] = x
            if self.early_exit:
                return feats
            x = net.layer3(x)
            feats[16] = x
            x = net.layer4(x)
            feats[32] = x
            return feats

    def train(self, mode=True):
        super().train(mode)
        if self.freeze_bn:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
                pass


class VGG19(nn.Module):
    def __init__(self, pretrained=False, amp=False) -> None:
        super().__init__()
        self.layers = nn.ModuleList(tvm.vgg19_bn(pretrained=pretrained).features[:40])
        self.amp = amp
        if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
            self.amp_dtype = torch.bfloat16
        else:
            self.amp_dtype = torch.float16

    def forward(self, x, **kwargs):
        with torch.autocast("cuda", enabled=self.amp, dtype=self.amp_dtype):
            feats = {}
            scale = 1
            for layer in self.layers:
                if isinstance(layer, nn.MaxPool2d):
                    feats[scale] = x
                    scale = scale * 2
                x = layer(x)
            return feats


class CNNandDinov2(nn.Module):
    def __init__(self, cnn_kwargs=None, amp=False, use_vgg=False, dinov2_weights=None):
        super().__init__()
        if dinov2_weights is None:
            dinov2_weights = torch.hub.load_state_dict_from_url(
                "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth",
                map_location="cpu",
            )
        from .transformer import vit_large

        vit_kwargs = dict(
            img_size=518,
            patch_size=14,
            init_values=1.0,
            ffn_layer="mlp",
            block_chunks=0,
        )

        dinov2_vitl14 = vit_large(**vit_kwargs).eval()
        dinov2_vitl14.load_state_dict(dinov2_weights)
        cnn_kwargs = cnn_kwargs if cnn_kwargs is not None else {}
        if not use_vgg:
            self.cnn = ResNet50(**cnn_kwargs)
        else:
            self.cnn = VGG19(**cnn_kwargs)
        self.amp = amp
        if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
            self.amp_dtype = torch.bfloat16
        else:
            self.amp_dtype = torch.float16
        if self.amp:
            dinov2_vitl14 = dinov2_vitl14.to(self.amp_dtype)
        self.dinov2_vitl14 = [dinov2_vitl14]  # ugly hack to not show parameters to DDP

    def train(self, mode: bool = True):
        return self.cnn.train(mode)

    def forward(self, x, upsample=False):
        B, C, H, W = x.shape
        feature_pyramid = self.cnn(x)

        if not upsample:
            with torch.no_grad():
                if self.dinov2_vitl14[0].device != x.device:
                    self.dinov2_vitl14[0] = (
                        self.dinov2_vitl14[0].to(x.device).to(self.amp_dtype)
                    )
                dinov2_features_16 = self.dinov2_vitl14[0].forward_features(
                    x.to(self.amp_dtype)
                )
                features_16 = (
                    dinov2_features_16["x_norm_patchtokens"]
                    .permute(0, 2, 1)
                    .reshape(B, 1024, H // 14, W // 14)
                )
                del dinov2_features_16
                feature_pyramid[16] = features_16
        return feature_pyramid