Spaces:
Running
Running
File size: 17,827 Bytes
10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
"""
Loss function implementations.
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from kornia.geometry import warp_perspective
from ..misc.geometry_utils import keypoints_to_grid, get_dist_mask, get_common_line_mask
def get_loss_and_weights(model_cfg, device=torch.device("cuda")):
"""Get loss functions and either static or dynamic weighting."""
# Get the global weighting policy
w_policy = model_cfg.get("weighting_policy", "static")
if not w_policy in ["static", "dynamic"]:
raise ValueError("[Error] Not supported weighting policy.")
loss_func = {}
loss_weight = {}
# Get junction loss function and weight
w_junc, junc_loss_func = get_junction_loss_and_weight(model_cfg, w_policy)
loss_func["junc_loss"] = junc_loss_func.to(device)
loss_weight["w_junc"] = w_junc
# Get heatmap loss function and weight
w_heatmap, heatmap_loss_func = get_heatmap_loss_and_weight(
model_cfg, w_policy, device
)
loss_func["heatmap_loss"] = heatmap_loss_func.to(device)
loss_weight["w_heatmap"] = w_heatmap
# [Optionally] get descriptor loss function and weight
if model_cfg.get("descriptor_loss_func", None) is not None:
w_descriptor, descriptor_loss_func = get_descriptor_loss_and_weight(
model_cfg, w_policy
)
loss_func["descriptor_loss"] = descriptor_loss_func.to(device)
loss_weight["w_desc"] = w_descriptor
return loss_func, loss_weight
def get_junction_loss_and_weight(model_cfg, global_w_policy):
"""Get the junction loss function and weight."""
junction_loss_cfg = model_cfg.get("junction_loss_cfg", {})
# Get the junction loss weight
w_policy = junction_loss_cfg.get("policy", global_w_policy)
if w_policy == "static":
w_junc = torch.tensor(model_cfg["w_junc"], dtype=torch.float32)
elif w_policy == "dynamic":
w_junc = nn.Parameter(
torch.tensor(model_cfg["w_junc"], dtype=torch.float32), requires_grad=True
)
else:
raise ValueError("[Error] Unknown weighting policy for junction loss weight.")
# Get the junction loss function
junc_loss_name = model_cfg.get("junction_loss_func", "superpoint")
if junc_loss_name == "superpoint":
junc_loss_func = JunctionDetectionLoss(
model_cfg["grid_size"], model_cfg["keep_border_valid"]
)
else:
raise ValueError("[Error] Not supported junction loss function.")
return w_junc, junc_loss_func
def get_heatmap_loss_and_weight(model_cfg, global_w_policy, device):
"""Get the heatmap loss function and weight."""
heatmap_loss_cfg = model_cfg.get("heatmap_loss_cfg", {})
# Get the heatmap loss weight
w_policy = heatmap_loss_cfg.get("policy", global_w_policy)
if w_policy == "static":
w_heatmap = torch.tensor(model_cfg["w_heatmap"], dtype=torch.float32)
elif w_policy == "dynamic":
w_heatmap = nn.Parameter(
torch.tensor(model_cfg["w_heatmap"], dtype=torch.float32),
requires_grad=True,
)
else:
raise ValueError("[Error] Unknown weighting policy for junction loss weight.")
# Get the corresponding heatmap loss based on the config
heatmap_loss_name = model_cfg.get("heatmap_loss_func", "cross_entropy")
if heatmap_loss_name == "cross_entropy":
# Get the heatmap class weight (always static)
heatmap_class_w = model_cfg.get("w_heatmap_class", 1.0)
class_weight = (
torch.tensor(np.array([1.0, heatmap_class_w])).to(torch.float).to(device)
)
heatmap_loss_func = HeatmapLoss(class_weight=class_weight)
else:
raise ValueError("[Error] Not supported heatmap loss function.")
return w_heatmap, heatmap_loss_func
def get_descriptor_loss_and_weight(model_cfg, global_w_policy):
"""Get the descriptor loss function and weight."""
descriptor_loss_cfg = model_cfg.get("descriptor_loss_cfg", {})
# Get the descriptor loss weight
w_policy = descriptor_loss_cfg.get("policy", global_w_policy)
if w_policy == "static":
w_descriptor = torch.tensor(model_cfg["w_desc"], dtype=torch.float32)
elif w_policy == "dynamic":
w_descriptor = nn.Parameter(
torch.tensor(model_cfg["w_desc"], dtype=torch.float32), requires_grad=True
)
else:
raise ValueError("[Error] Unknown weighting policy for descriptor loss weight.")
# Get the descriptor loss function
descriptor_loss_name = model_cfg.get("descriptor_loss_func", "regular_sampling")
if descriptor_loss_name == "regular_sampling":
descriptor_loss_func = TripletDescriptorLoss(
descriptor_loss_cfg["grid_size"],
descriptor_loss_cfg["dist_threshold"],
descriptor_loss_cfg["margin"],
)
else:
raise ValueError("[Error] Not supported descriptor loss function.")
return w_descriptor, descriptor_loss_func
def space_to_depth(input_tensor, grid_size):
"""PixelUnshuffle for pytorch."""
N, C, H, W = input_tensor.size()
# (N, C, H//bs, bs, W//bs, bs)
x = input_tensor.view(N, C, H // grid_size, grid_size, W // grid_size, grid_size)
# (N, bs, bs, C, H//bs, W//bs)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous()
# (N, C*bs^2, H//bs, W//bs)
x = x.view(N, C * (grid_size**2), H // grid_size, W // grid_size)
return x
def junction_detection_loss(
junction_map, junc_predictions, valid_mask=None, grid_size=8, keep_border=True
):
"""Junction detection loss."""
# Convert junc_map to channel tensor
junc_map = space_to_depth(junction_map, grid_size)
map_shape = junc_map.shape[-2:]
batch_size = junc_map.shape[0]
dust_bin_label = (
torch.ones([batch_size, 1, map_shape[0], map_shape[1]])
.to(junc_map.device)
.to(torch.int)
)
junc_map = torch.cat([junc_map * 2, dust_bin_label], dim=1)
labels = torch.argmax(
junc_map.to(torch.float)
+ torch.distributions.Uniform(0, 0.1)
.sample(junc_map.shape)
.to(junc_map.device),
dim=1,
)
# Also convert the valid mask to channel tensor
valid_mask = torch.ones(junction_map.shape) if valid_mask is None else valid_mask
valid_mask = space_to_depth(valid_mask, grid_size)
# Compute junction loss on the border patch or not
if keep_border:
valid_mask = (
torch.sum(valid_mask.to(torch.bool).to(torch.int), dim=1, keepdim=True) > 0
)
else:
valid_mask = (
torch.sum(valid_mask.to(torch.bool).to(torch.int), dim=1, keepdim=True)
>= grid_size * grid_size
)
# Compute the classification loss
loss_func = nn.CrossEntropyLoss(reduction="none")
# The loss still need NCHW format
loss = loss_func(input=junc_predictions, target=labels.to(torch.long))
# Weighted sum by the valid mask
loss_ = torch.sum(
loss * torch.squeeze(valid_mask.to(torch.float), dim=1), dim=[0, 1, 2]
)
loss_final = loss_ / torch.sum(torch.squeeze(valid_mask.to(torch.float), dim=1))
return loss_final
def heatmap_loss(heatmap_gt, heatmap_pred, valid_mask=None, class_weight=None):
"""Heatmap prediction loss."""
# Compute the classification loss on each pixel
if class_weight is None:
loss_func = nn.CrossEntropyLoss(reduction="none")
else:
loss_func = nn.CrossEntropyLoss(class_weight, reduction="none")
loss = loss_func(
input=heatmap_pred, target=torch.squeeze(heatmap_gt.to(torch.long), dim=1)
)
# Weighted sum by the valid mask
# Sum over H and W
loss_spatial_sum = torch.sum(
loss * torch.squeeze(valid_mask.to(torch.float), dim=1), dim=[1, 2]
)
valid_spatial_sum = torch.sum(
torch.squeeze(valid_mask.to(torch.float32), dim=1), dim=[1, 2]
)
# Mean to single scalar over batch dimension
loss = torch.sum(loss_spatial_sum) / torch.sum(valid_spatial_sum)
return loss
class JunctionDetectionLoss(nn.Module):
"""Junction detection loss."""
def __init__(self, grid_size, keep_border):
super(JunctionDetectionLoss, self).__init__()
self.grid_size = grid_size
self.keep_border = keep_border
def forward(self, prediction, target, valid_mask=None):
return junction_detection_loss(
target, prediction, valid_mask, self.grid_size, self.keep_border
)
class HeatmapLoss(nn.Module):
"""Heatmap prediction loss."""
def __init__(self, class_weight):
super(HeatmapLoss, self).__init__()
self.class_weight = class_weight
def forward(self, prediction, target, valid_mask=None):
return heatmap_loss(target, prediction, valid_mask, self.class_weight)
class RegularizationLoss(nn.Module):
"""Module for regularization loss."""
def __init__(self):
super(RegularizationLoss, self).__init__()
self.name = "regularization_loss"
self.loss_init = torch.zeros([])
def forward(self, loss_weights):
# Place it to the same device
loss = self.loss_init.to(loss_weights["w_junc"].device)
for _, val in loss_weights.items():
if isinstance(val, nn.Parameter):
loss += val
return loss
def triplet_loss(
desc_pred1,
desc_pred2,
points1,
points2,
line_indices,
epoch,
grid_size=8,
dist_threshold=8,
init_dist_threshold=64,
margin=1,
):
"""Regular triplet loss for descriptor learning."""
b_size, _, Hc, Wc = desc_pred1.size()
img_size = (Hc * grid_size, Wc * grid_size)
device = desc_pred1.device
# Extract valid keypoints
n_points = line_indices.size()[1]
valid_points = line_indices.bool().flatten()
n_correct_points = torch.sum(valid_points).item()
if n_correct_points == 0:
return torch.tensor(0.0, dtype=torch.float, device=device)
# Check which keypoints are too close to be matched
# dist_threshold is decreased at each epoch for easier training
dist_threshold = max(dist_threshold, 2 * init_dist_threshold // (epoch + 1))
dist_mask = get_dist_mask(points1, points2, valid_points, dist_threshold)
# Additionally ban negative mining along the same line
common_line_mask = get_common_line_mask(line_indices, valid_points)
dist_mask = dist_mask | common_line_mask
# Convert the keypoints to a grid suitable for interpolation
grid1 = keypoints_to_grid(points1, img_size)
grid2 = keypoints_to_grid(points2, img_size)
# Extract the descriptors
desc1 = (
F.grid_sample(desc_pred1, grid1)
.permute(0, 2, 3, 1)
.reshape(b_size * n_points, -1)[valid_points]
)
desc1 = F.normalize(desc1, dim=1)
desc2 = (
F.grid_sample(desc_pred2, grid2)
.permute(0, 2, 3, 1)
.reshape(b_size * n_points, -1)[valid_points]
)
desc2 = F.normalize(desc2, dim=1)
desc_dists = 2 - 2 * (desc1 @ desc2.t())
# Positive distance loss
pos_dist = torch.diag(desc_dists)
# Negative distance loss
max_dist = torch.tensor(4.0, dtype=torch.float, device=device)
desc_dists[
torch.arange(n_correct_points, dtype=torch.long),
torch.arange(n_correct_points, dtype=torch.long),
] = max_dist
desc_dists[dist_mask] = max_dist
neg_dist = torch.min(
torch.min(desc_dists, dim=1)[0], torch.min(desc_dists, dim=0)[0]
)
triplet_loss = F.relu(margin + pos_dist - neg_dist)
return triplet_loss, grid1, grid2, valid_points
class TripletDescriptorLoss(nn.Module):
"""Triplet descriptor loss."""
def __init__(self, grid_size, dist_threshold, margin):
super(TripletDescriptorLoss, self).__init__()
self.grid_size = grid_size
self.init_dist_threshold = 64
self.dist_threshold = dist_threshold
self.margin = margin
def forward(self, desc_pred1, desc_pred2, points1, points2, line_indices, epoch):
return self.descriptor_loss(
desc_pred1, desc_pred2, points1, points2, line_indices, epoch
)
# The descriptor loss based on regularly sampled points along the lines
def descriptor_loss(
self, desc_pred1, desc_pred2, points1, points2, line_indices, epoch
):
return torch.mean(
triplet_loss(
desc_pred1,
desc_pred2,
points1,
points2,
line_indices,
epoch,
self.grid_size,
self.dist_threshold,
self.init_dist_threshold,
self.margin,
)[0]
)
class TotalLoss(nn.Module):
"""Total loss summing junction, heatma, descriptor
and regularization losses."""
def __init__(self, loss_funcs, loss_weights, weighting_policy):
super(TotalLoss, self).__init__()
# Whether we need to compute the descriptor loss
self.compute_descriptors = "descriptor_loss" in loss_funcs.keys()
self.loss_funcs = loss_funcs
self.loss_weights = loss_weights
self.weighting_policy = weighting_policy
# Always add regularization loss (it will return zero if not used)
self.loss_funcs["reg_loss"] = RegularizationLoss().cuda()
def forward(
self, junc_pred, junc_target, heatmap_pred, heatmap_target, valid_mask=None
):
"""Detection only loss."""
# Compute the junction loss
junc_loss = self.loss_funcs["junc_loss"](junc_pred, junc_target, valid_mask)
# Compute the heatmap loss
heatmap_loss = self.loss_funcs["heatmap_loss"](
heatmap_pred, heatmap_target, valid_mask
)
# Compute the total loss.
if self.weighting_policy == "dynamic":
reg_loss = self.loss_funcs["reg_loss"](self.loss_weights)
total_loss = (
junc_loss * torch.exp(-self.loss_weights["w_junc"])
+ heatmap_loss * torch.exp(-self.loss_weights["w_heatmap"])
+ reg_loss
)
return {
"total_loss": total_loss,
"junc_loss": junc_loss,
"heatmap_loss": heatmap_loss,
"reg_loss": reg_loss,
"w_junc": torch.exp(-self.loss_weights["w_junc"]).item(),
"w_heatmap": torch.exp(-self.loss_weights["w_heatmap"]).item(),
}
elif self.weighting_policy == "static":
total_loss = (
junc_loss * self.loss_weights["w_junc"]
+ heatmap_loss * self.loss_weights["w_heatmap"]
)
return {
"total_loss": total_loss,
"junc_loss": junc_loss,
"heatmap_loss": heatmap_loss,
}
else:
raise ValueError("[Error] Unknown weighting policy.")
def forward_descriptors(
self,
junc_map_pred1,
junc_map_pred2,
junc_map_target1,
junc_map_target2,
heatmap_pred1,
heatmap_pred2,
heatmap_target1,
heatmap_target2,
line_points1,
line_points2,
line_indices,
desc_pred1,
desc_pred2,
epoch,
valid_mask1=None,
valid_mask2=None,
):
"""Loss for detection + description."""
# Compute junction loss
junc_loss = self.loss_funcs["junc_loss"](
torch.cat([junc_map_pred1, junc_map_pred2], dim=0),
torch.cat([junc_map_target1, junc_map_target2], dim=0),
torch.cat([valid_mask1, valid_mask2], dim=0),
)
# Get junction loss weight (dynamic or not)
if isinstance(self.loss_weights["w_junc"], nn.Parameter):
w_junc = torch.exp(-self.loss_weights["w_junc"])
else:
w_junc = self.loss_weights["w_junc"]
# Compute heatmap loss
heatmap_loss = self.loss_funcs["heatmap_loss"](
torch.cat([heatmap_pred1, heatmap_pred2], dim=0),
torch.cat([heatmap_target1, heatmap_target2], dim=0),
torch.cat([valid_mask1, valid_mask2], dim=0),
)
# Get heatmap loss weight (dynamic or not)
if isinstance(self.loss_weights["w_heatmap"], nn.Parameter):
w_heatmap = torch.exp(-self.loss_weights["w_heatmap"])
else:
w_heatmap = self.loss_weights["w_heatmap"]
# Compute the descriptor loss
descriptor_loss = self.loss_funcs["descriptor_loss"](
desc_pred1, desc_pred2, line_points1, line_points2, line_indices, epoch
)
# Get descriptor loss weight (dynamic or not)
if isinstance(self.loss_weights["w_desc"], nn.Parameter):
w_descriptor = torch.exp(-self.loss_weights["w_desc"])
else:
w_descriptor = self.loss_weights["w_desc"]
# Update the total loss
total_loss = (
junc_loss * w_junc
+ heatmap_loss * w_heatmap
+ descriptor_loss * w_descriptor
)
outputs = {
"junc_loss": junc_loss,
"heatmap_loss": heatmap_loss,
"w_junc": w_junc.item() if isinstance(w_junc, nn.Parameter) else w_junc,
"w_heatmap": w_heatmap.item()
if isinstance(w_heatmap, nn.Parameter)
else w_heatmap,
"descriptor_loss": descriptor_loss,
"w_desc": w_descriptor.item()
if isinstance(w_descriptor, nn.Parameter)
else w_descriptor,
}
# Compute the regularization loss
reg_loss = self.loss_funcs["reg_loss"](self.loss_weights)
total_loss += reg_loss
outputs.update({"reg_loss": reg_loss, "total_loss": total_loss})
return outputs
|