File size: 10,232 Bytes
7ac633e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c818f
 
 
7ac633e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c818f
 
 
7ac633e
 
 
 
 
 
 
 
 
 
d4c818f
 
 
7ac633e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c818f
 
 
7ac633e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c818f
 
 
 
 
7ac633e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c818f
 
7ac633e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c818f
 
7ac633e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import argparse
import contextlib
import io
import sys
from pathlib import Path
from typing import Any, Dict, List, Optional

import numpy as np
import pycolmap
from tqdm import tqdm

from . import logger
from .utils.database import COLMAPDatabase
from .utils.geometry import compute_epipolar_errors
from .utils.io import get_keypoints, get_matches
from .utils.parsers import parse_retrieval


class OutputCapture:
    def __init__(self, verbose: bool):
        self.verbose = verbose

    def __enter__(self):
        if not self.verbose:
            self.capture = contextlib.redirect_stdout(io.StringIO())
            self.out = self.capture.__enter__()

    def __exit__(self, exc_type, *args):
        if not self.verbose:
            self.capture.__exit__(exc_type, *args)
            if exc_type is not None:
                logger.error("Failed with output:\n%s", self.out.getvalue())
        sys.stdout.flush()


def create_db_from_model(
    reconstruction: pycolmap.Reconstruction, database_path: Path
) -> Dict[str, int]:
    if database_path.exists():
        logger.warning("The database already exists, deleting it.")
        database_path.unlink()

    db = COLMAPDatabase.connect(database_path)
    db.create_tables()

    for i, camera in reconstruction.cameras.items():
        db.add_camera(
            camera.model.value,
            camera.width,
            camera.height,
            camera.params,
            camera_id=i,
            prior_focal_length=True,
        )

    for i, image in reconstruction.images.items():
        db.add_image(image.name, image.camera_id, image_id=i)

    db.commit()
    db.close()
    return {image.name: i for i, image in reconstruction.images.items()}


def import_features(
    image_ids: Dict[str, int], database_path: Path, features_path: Path
):
    logger.info("Importing features into the database...")
    db = COLMAPDatabase.connect(database_path)

    for image_name, image_id in tqdm(image_ids.items()):
        keypoints = get_keypoints(features_path, image_name)
        keypoints += 0.5  # COLMAP origin
        db.add_keypoints(image_id, keypoints)

    db.commit()
    db.close()


def import_matches(
    image_ids: Dict[str, int],
    database_path: Path,
    pairs_path: Path,
    matches_path: Path,
    min_match_score: Optional[float] = None,
    skip_geometric_verification: bool = False,
):
    logger.info("Importing matches into the database...")

    with open(str(pairs_path), "r") as f:
        pairs = [p.split() for p in f.readlines()]

    db = COLMAPDatabase.connect(database_path)

    matched = set()
    for name0, name1 in tqdm(pairs):
        id0, id1 = image_ids[name0], image_ids[name1]
        if len({(id0, id1), (id1, id0)} & matched) > 0:
            continue
        matches, scores = get_matches(matches_path, name0, name1)
        if min_match_score:
            matches = matches[scores > min_match_score]
        db.add_matches(id0, id1, matches)
        matched |= {(id0, id1), (id1, id0)}

        if skip_geometric_verification:
            db.add_two_view_geometry(id0, id1, matches)

    db.commit()
    db.close()


def estimation_and_geometric_verification(
    database_path: Path, pairs_path: Path, verbose: bool = False
):
    logger.info("Performing geometric verification of the matches...")
    with OutputCapture(verbose):
        with pycolmap.ostream():
            pycolmap.verify_matches(
                database_path,
                pairs_path,
                options=dict(
                    ransac=dict(max_num_trials=20000, min_inlier_ratio=0.1)
                ),
            )


def geometric_verification(
    image_ids: Dict[str, int],
    reference: pycolmap.Reconstruction,
    database_path: Path,
    features_path: Path,
    pairs_path: Path,
    matches_path: Path,
    max_error: float = 4.0,
):
    logger.info("Performing geometric verification of the matches...")

    pairs = parse_retrieval(pairs_path)
    db = COLMAPDatabase.connect(database_path)

    inlier_ratios = []
    matched = set()
    for name0 in tqdm(pairs):
        id0 = image_ids[name0]
        image0 = reference.images[id0]
        cam0 = reference.cameras[image0.camera_id]
        kps0, noise0 = get_keypoints(
            features_path, name0, return_uncertainty=True
        )
        noise0 = 1.0 if noise0 is None else noise0
        if len(kps0) > 0:
            kps0 = np.stack(cam0.cam_from_img(kps0))
        else:
            kps0 = np.zeros((0, 2))

        for name1 in pairs[name0]:
            id1 = image_ids[name1]
            image1 = reference.images[id1]
            cam1 = reference.cameras[image1.camera_id]
            kps1, noise1 = get_keypoints(
                features_path, name1, return_uncertainty=True
            )
            noise1 = 1.0 if noise1 is None else noise1
            if len(kps1) > 0:
                kps1 = np.stack(cam1.cam_from_img(kps1))
            else:
                kps1 = np.zeros((0, 2))

            matches = get_matches(matches_path, name0, name1)[0]

            if len({(id0, id1), (id1, id0)} & matched) > 0:
                continue
            matched |= {(id0, id1), (id1, id0)}

            if matches.shape[0] == 0:
                db.add_two_view_geometry(id0, id1, matches)
                continue

            cam1_from_cam0 = (
                image1.cam_from_world * image0.cam_from_world.inverse()
            )
            errors0, errors1 = compute_epipolar_errors(
                cam1_from_cam0, kps0[matches[:, 0]], kps1[matches[:, 1]]
            )
            valid_matches = np.logical_and(
                errors0 <= cam0.cam_from_img_threshold(noise0 * max_error),
                errors1 <= cam1.cam_from_img_threshold(noise1 * max_error),
            )
            # TODO: We could also add E to the database, but we need
            # to reverse the transformations if id0 > id1 in utils/database.py.
            db.add_two_view_geometry(id0, id1, matches[valid_matches, :])
            inlier_ratios.append(np.mean(valid_matches))
    logger.info(
        "mean/med/min/max valid matches %.2f/%.2f/%.2f/%.2f%%.",
        np.mean(inlier_ratios) * 100,
        np.median(inlier_ratios) * 100,
        np.min(inlier_ratios) * 100,
        np.max(inlier_ratios) * 100,
    )

    db.commit()
    db.close()


def run_triangulation(
    model_path: Path,
    database_path: Path,
    image_dir: Path,
    reference_model: pycolmap.Reconstruction,
    verbose: bool = False,
    options: Optional[Dict[str, Any]] = None,
) -> pycolmap.Reconstruction:
    model_path.mkdir(parents=True, exist_ok=True)
    logger.info("Running 3D triangulation...")
    if options is None:
        options = {}
    with OutputCapture(verbose):
        with pycolmap.ostream():
            reconstruction = pycolmap.triangulate_points(
                reference_model,
                database_path,
                image_dir,
                model_path,
                options=options,
            )
    return reconstruction


def main(
    sfm_dir: Path,
    reference_model: Path,
    image_dir: Path,
    pairs: Path,
    features: Path,
    matches: Path,
    skip_geometric_verification: bool = False,
    estimate_two_view_geometries: bool = False,
    min_match_score: Optional[float] = None,
    verbose: bool = False,
    mapper_options: Optional[Dict[str, Any]] = None,
) -> pycolmap.Reconstruction:
    assert reference_model.exists(), reference_model
    assert features.exists(), features
    assert pairs.exists(), pairs
    assert matches.exists(), matches

    sfm_dir.mkdir(parents=True, exist_ok=True)
    database = sfm_dir / "database.db"
    reference = pycolmap.Reconstruction(reference_model)

    image_ids = create_db_from_model(reference, database)
    import_features(image_ids, database, features)
    import_matches(
        image_ids,
        database,
        pairs,
        matches,
        min_match_score,
        skip_geometric_verification,
    )
    if not skip_geometric_verification:
        if estimate_two_view_geometries:
            estimation_and_geometric_verification(database, pairs, verbose)
        else:
            geometric_verification(
                image_ids, reference, database, features, pairs, matches
            )
    reconstruction = run_triangulation(
        sfm_dir, database, image_dir, reference, verbose, mapper_options
    )
    logger.info(
        "Finished the triangulation with statistics:\n%s",
        reconstruction.summary(),
    )
    return reconstruction


def parse_option_args(args: List[str], default_options) -> Dict[str, Any]:
    options = {}
    for arg in args:
        idx = arg.find("=")
        if idx == -1:
            raise ValueError("Options format: key1=value1 key2=value2 etc.")
        key, value = arg[:idx], arg[idx + 1 :]
        if not hasattr(default_options, key):
            raise ValueError(
                f'Unknown option "{key}", allowed options and default values'
                f" for {default_options.summary()}"
            )
        value = eval(value)
        target_type = type(getattr(default_options, key))
        if not isinstance(value, target_type):
            raise ValueError(
                f'Incorrect type for option "{key}":'
                f" {type(value)} vs {target_type}"
            )
        options[key] = value
    return options


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--sfm_dir", type=Path, required=True)
    parser.add_argument("--reference_sfm_model", type=Path, required=True)
    parser.add_argument("--image_dir", type=Path, required=True)

    parser.add_argument("--pairs", type=Path, required=True)
    parser.add_argument("--features", type=Path, required=True)
    parser.add_argument("--matches", type=Path, required=True)

    parser.add_argument("--skip_geometric_verification", action="store_true")
    parser.add_argument("--min_match_score", type=float)
    parser.add_argument("--verbose", action="store_true")
    args = parser.parse_args().__dict__

    mapper_options = parse_option_args(
        args.pop("mapper_options"), pycolmap.IncrementalMapperOptions()
    )

    main(**args, mapper_options=mapper_options)