File size: 5,724 Bytes
9fb6531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import matplotlib
import matplotlib.pyplot as plt

import numpy as np
import cv2
from sys import exit

import torch
import torch.nn.functional as F

from lib.utils import (
	grid_positions,
	upscale_positions,
	downscale_positions,
	savefig,
	imshow_image
)
from lib.exceptions import NoGradientError, EmptyTensorError

matplotlib.use('Agg')


def loss_function(
		model, batch, device, margin=1, safe_radius=4, scaling_steps=3, plot=False, plot_path=None
):
	output = model({
		'image1': batch['image1'].to(device),
		'image2': batch['image2'].to(device)
	})
	
	
	loss = torch.tensor(np.array([0], dtype=np.float32), device=device)
	has_grad = False

	n_valid_samples = 0
	for idx_in_batch in range(batch['image1'].size(0)):
		# Network output
		dense_features1 = output['dense_features1'][idx_in_batch]
		c, h1, w1 = dense_features1.size()
		scores1 = output['scores1'][idx_in_batch].view(-1)

		dense_features2 = output['dense_features2'][idx_in_batch]
		_, h2, w2 = dense_features2.size()
		scores2 = output['scores2'][idx_in_batch]

		all_descriptors1 = F.normalize(dense_features1.view(c, -1), dim=0)
		descriptors1 = all_descriptors1

		all_descriptors2 = F.normalize(dense_features2.view(c, -1), dim=0)

		fmap_pos1 = grid_positions(h1, w1, device)

		pos1 = batch['pos1'][idx_in_batch].to(device)
		pos2 = batch['pos2'][idx_in_batch].to(device)

		ids = idsAlign(pos1, device, h1, w1)

		fmap_pos1 = fmap_pos1[:, ids]
		descriptors1 = descriptors1[:, ids]
		scores1 = scores1[ids]

		# Skip the pair if not enough GT correspondences are available
		if ids.size(0) < 128:
			continue

		# Descriptors at the corresponding positions
		fmap_pos2 = torch.round(
			downscale_positions(pos2, scaling_steps=scaling_steps)
		).long()

		descriptors2 = F.normalize(
			dense_features2[:, fmap_pos2[0, :], fmap_pos2[1, :]],
			dim=0
		)
		positive_distance = 2 - 2 * (
			descriptors1.t().unsqueeze(1) @ descriptors2.t().unsqueeze(2)
		).squeeze()

		all_fmap_pos2 = grid_positions(h2, w2, device)
		position_distance = torch.max(
			torch.abs(
				fmap_pos2.unsqueeze(2).float() -
				all_fmap_pos2.unsqueeze(1)
			),
			dim=0
		)[0]
		is_out_of_safe_radius = position_distance > safe_radius

		distance_matrix = 2 - 2 * (descriptors1.t() @ all_descriptors2)

		negative_distance2 = torch.min(
			distance_matrix + (1 - is_out_of_safe_radius.float()) * 10.,
			dim=1
		)[0]

		all_fmap_pos1 = grid_positions(h1, w1, device)
		position_distance = torch.max(
			torch.abs(
				fmap_pos1.unsqueeze(2).float() -
				all_fmap_pos1.unsqueeze(1)
			),
			dim=0
		)[0]
		is_out_of_safe_radius = position_distance > safe_radius

		distance_matrix = 2 - 2 * (descriptors2.t() @ all_descriptors1)

		negative_distance1 = torch.min(
			distance_matrix + (1 - is_out_of_safe_radius.float()) * 10.,
			dim=1
		)[0]

		diff = positive_distance - torch.min(
			negative_distance1, negative_distance2
		)

		scores2 = scores2[fmap_pos2[0, :], fmap_pos2[1, :]]

		loss = loss + (
			torch.sum(scores1 * scores2 * F.relu(margin + diff)) /
			(torch.sum(scores1 * scores2) )
		)

		has_grad = True
		n_valid_samples += 1

		if plot and batch['batch_idx'] % batch['log_interval'] == 0:
			drawTraining(batch['image1'], batch['image2'], pos1, pos2, batch, idx_in_batch, output, save=True, plot_path=plot_path)

	if not has_grad:
		raise NoGradientError

	loss = loss / (n_valid_samples )

	return loss


def idsAlign(pos1, device, h1, w1):
	pos1D = downscale_positions(pos1, scaling_steps=3)
	row = pos1D[0, :]
	col = pos1D[1, :]

	ids = []

	for i in range(row.shape[0]):

		index = ((w1) * (row[i])) + (col[i])
		ids.append(index)

	ids = torch.round(torch.Tensor(ids)).long().to(device)

	return ids


def drawTraining(image1, image2, pos1, pos2, batch, idx_in_batch, output, save=False, plot_path="train_viz"):
	pos1_aux = pos1.cpu().numpy()
	pos2_aux = pos2.cpu().numpy()

	k = pos1_aux.shape[1]
	col = np.random.rand(k, 3)
	n_sp = 4
	plt.figure()
	plt.subplot(1, n_sp, 1)
	im1 = imshow_image(
		image1[0].cpu().numpy(),
		preprocessing=batch['preprocessing']
	)
	plt.imshow(im1)
	plt.scatter(
		pos1_aux[1, :], pos1_aux[0, :],
		s=0.25**2, c=col, marker=',', alpha=0.5
	)
	plt.axis('off')
	plt.subplot(1, n_sp, 2)
	plt.imshow(
		output['scores1'][idx_in_batch].data.cpu().numpy(),
		cmap='Reds'
	)
	plt.axis('off')
	plt.subplot(1, n_sp, 3)
	im2 = imshow_image(
		image2[0].cpu().numpy(),
		preprocessing=batch['preprocessing']
	)
	plt.imshow(im2)
	plt.scatter(
		pos2_aux[1, :], pos2_aux[0, :],
		s=0.25**2, c=col, marker=',', alpha=0.5
	)
	plt.axis('off')
	plt.subplot(1, n_sp, 4)
	plt.imshow(
		output['scores2'][idx_in_batch].data.cpu().numpy(),
		cmap='Reds'
	)
	plt.axis('off')

	if(save == True):
		savefig(plot_path+'/%s.%02d.%02d.%d.png' % (
			'train' if batch['train'] else 'valid',
			batch['epoch_idx'],
			batch['batch_idx'] // batch['log_interval'],
			idx_in_batch
		), dpi=300)
	else:
		plt.show()

	plt.close()

	im1 = cv2.cvtColor(im1, cv2.COLOR_BGR2RGB)
	im2 = cv2.cvtColor(im2, cv2.COLOR_BGR2RGB)

	for i in range(0, pos1_aux.shape[1], 5):
		im1 = cv2.circle(im1, (pos1_aux[1, i], pos1_aux[0, i]), 1, (0, 0, 255), 2)
	for i in range(0, pos2_aux.shape[1], 5):
		im2 = cv2.circle(im2, (pos2_aux[1, i], pos2_aux[0, i]), 1, (0, 0, 255), 2)

	im3 = cv2.hconcat([im1, im2])

	for i in range(0, pos1_aux.shape[1], 5):
		im3 = cv2.line(im3, (int(pos1_aux[1, i]), int(pos1_aux[0, i])), (int(pos2_aux[1, i]) +  im1.shape[1], int(pos2_aux[0, i])), (0, 255, 0), 1)

	if(save == True):
		cv2.imwrite(plot_path+'/%s.%02d.%02d.%d.png' % (
			'train_corr' if batch['train'] else 'valid',
			batch['epoch_idx'],
			batch['batch_idx'] // batch['log_interval'],
			idx_in_batch
		), im3)
	else:
		cv2.imshow('Image', im3)
		cv2.waitKey(0)