File size: 20,292 Bytes
c0283b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import argparse
import logging
import shutil
import tarfile
from collections.abc import Iterable
from pathlib import Path

import h5py
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
import torch
from omegaconf import OmegaConf

from ..geometry.wrappers import Camera, Pose
from ..models.cache_loader import CacheLoader
from ..settings import DATA_PATH
from ..utils.image import ImagePreprocessor, load_image
from ..utils.tools import fork_rng
from ..visualization.viz2d import plot_heatmaps, plot_image_grid
from .base_dataset import BaseDataset
from .utils import rotate_intrinsics, rotate_pose_inplane, scale_intrinsics

logger = logging.getLogger(__name__)
scene_lists_path = Path(__file__).parent / "megadepth_scene_lists"


def sample_n(data, num, seed=None):
    if len(data) > num:
        selected = np.random.RandomState(seed).choice(len(data), num, replace=False)
        return data[selected]
    else:
        return data


class MegaDepth(BaseDataset):
    default_conf = {
        # paths
        "data_dir": "megadepth/",
        "depth_subpath": "depth_undistorted/",
        "image_subpath": "Undistorted_SfM/",
        "info_dir": "scene_info/",  # @TODO: intrinsics problem?
        # Training
        "train_split": "train_scenes_clean.txt",
        "train_num_per_scene": 500,
        # Validation
        "val_split": "valid_scenes_clean.txt",
        "val_num_per_scene": None,
        "val_pairs": None,
        # Test
        "test_split": "test_scenes_clean.txt",
        "test_num_per_scene": None,
        "test_pairs": None,
        # data sampling
        "views": 2,
        "min_overlap": 0.3,  # only with D2-Net format
        "max_overlap": 1.0,  # only with D2-Net format
        "num_overlap_bins": 1,
        "sort_by_overlap": False,
        "triplet_enforce_overlap": False,  # only with views==3
        # image options
        "read_depth": True,
        "read_image": True,
        "grayscale": False,
        "preprocessing": ImagePreprocessor.default_conf,
        "p_rotate": 0.0,  # probability to rotate image by +/- 90°
        "reseed": False,
        "seed": 0,
        # features from cache
        "load_features": {
            "do": False,
            **CacheLoader.default_conf,
            "collate": False,
        },
    }

    def _init(self, conf):
        if not (DATA_PATH / conf.data_dir).exists():
            logger.info("Downloading the MegaDepth dataset.")
            self.download()

    def download(self):
        data_dir = DATA_PATH / self.conf.data_dir
        tmp_dir = data_dir.parent / "megadepth_tmp"
        if tmp_dir.exists():  # The previous download failed.
            shutil.rmtree(tmp_dir)
        tmp_dir.mkdir(exist_ok=True, parents=True)
        url_base = "https://cvg-data.inf.ethz.ch/megadepth/"
        for tar_name, out_name in (
            ("Undistorted_SfM.tar.gz", self.conf.image_subpath),
            ("depth_undistorted.tar.gz", self.conf.depth_subpath),
            ("scene_info.tar.gz", self.conf.info_dir),
        ):
            tar_path = tmp_dir / tar_name
            torch.hub.download_url_to_file(url_base + tar_name, tar_path)
            with tarfile.open(tar_path) as tar:
                tar.extractall(path=tmp_dir)
            tar_path.unlink()
            shutil.move(tmp_dir / tar_name.split(".")[0], tmp_dir / out_name)
        shutil.move(tmp_dir, data_dir)

    def get_dataset(self, split):
        assert self.conf.views in [1, 2, 3]
        if self.conf.views == 3:
            return _TripletDataset(self.conf, split)
        else:
            return _PairDataset(self.conf, split)


class _PairDataset(torch.utils.data.Dataset):
    def __init__(self, conf, split, load_sample=True):
        self.root = DATA_PATH / conf.data_dir
        assert self.root.exists(), self.root
        self.split = split
        self.conf = conf

        split_conf = conf[split + "_split"]
        if isinstance(split_conf, (str, Path)):
            scenes_path = scene_lists_path / split_conf
            scenes = scenes_path.read_text().rstrip("\n").split("\n")
        elif isinstance(split_conf, Iterable):
            scenes = list(split_conf)
        else:
            raise ValueError(f"Unknown split configuration: {split_conf}.")
        scenes = sorted(set(scenes))

        if conf.load_features.do:
            self.feature_loader = CacheLoader(conf.load_features)

        self.preprocessor = ImagePreprocessor(conf.preprocessing)

        self.images = {}
        self.depths = {}
        self.poses = {}
        self.intrinsics = {}
        self.valid = {}

        # load metadata
        self.info_dir = self.root / self.conf.info_dir
        self.scenes = []
        for scene in scenes:
            path = self.info_dir / (scene + ".npz")
            try:
                info = np.load(str(path), allow_pickle=True)
            except Exception:
                logger.warning(
                    "Cannot load scene info for scene %s at %s.", scene, path
                )
                continue
            self.images[scene] = info["image_paths"]
            self.depths[scene] = info["depth_paths"]
            self.poses[scene] = info["poses"]
            self.intrinsics[scene] = info["intrinsics"]
            self.scenes.append(scene)

        if load_sample:
            self.sample_new_items(conf.seed)
            assert len(self.items) > 0

    def sample_new_items(self, seed):
        logger.info("Sampling new %s data with seed %d.", self.split, seed)
        self.items = []
        split = self.split
        num_per_scene = self.conf[self.split + "_num_per_scene"]
        if isinstance(num_per_scene, Iterable):
            num_pos, num_neg = num_per_scene
        else:
            num_pos = num_per_scene
            num_neg = None
        if split != "train" and self.conf[split + "_pairs"] is not None:
            # Fixed validation or test pairs
            assert num_pos is None
            assert num_neg is None
            assert self.conf.views == 2
            pairs_path = scene_lists_path / self.conf[split + "_pairs"]
            for line in pairs_path.read_text().rstrip("\n").split("\n"):
                im0, im1 = line.split(" ")
                scene = im0.split("/")[0]
                assert im1.split("/")[0] == scene
                im0, im1 = [self.conf.image_subpath + im for im in [im0, im1]]
                assert im0 in self.images[scene]
                assert im1 in self.images[scene]
                idx0 = np.where(self.images[scene] == im0)[0][0]
                idx1 = np.where(self.images[scene] == im1)[0][0]
                self.items.append((scene, idx0, idx1, 1.0))
        elif self.conf.views == 1:
            for scene in self.scenes:
                if scene not in self.images:
                    continue
                valid = (self.images[scene] != None) | (  # noqa: E711
                    self.depths[scene] != None  # noqa: E711
                )
                ids = np.where(valid)[0]
                if num_pos and len(ids) > num_pos:
                    ids = np.random.RandomState(seed).choice(
                        ids, num_pos, replace=False
                    )
                ids = [(scene, i) for i in ids]
                self.items.extend(ids)
        else:
            for scene in self.scenes:
                path = self.info_dir / (scene + ".npz")
                assert path.exists(), path
                info = np.load(str(path), allow_pickle=True)
                valid = (self.images[scene] != None) & (  # noqa: E711
                    self.depths[scene] != None  # noqa: E711
                )
                ind = np.where(valid)[0]
                mat = info["overlap_matrix"][valid][:, valid]

                if num_pos is not None:
                    # Sample a subset of pairs, binned by overlap.
                    num_bins = self.conf.num_overlap_bins
                    assert num_bins > 0
                    bin_width = (
                        self.conf.max_overlap - self.conf.min_overlap
                    ) / num_bins
                    num_per_bin = num_pos // num_bins
                    pairs_all = []
                    for k in range(num_bins):
                        bin_min = self.conf.min_overlap + k * bin_width
                        bin_max = bin_min + bin_width
                        pairs_bin = (mat > bin_min) & (mat <= bin_max)
                        pairs_bin = np.stack(np.where(pairs_bin), -1)
                        pairs_all.append(pairs_bin)
                    # Skip bins with too few samples
                    has_enough_samples = [len(p) >= num_per_bin * 2 for p in pairs_all]
                    num_per_bin_2 = num_pos // max(1, sum(has_enough_samples))
                    pairs = []
                    for pairs_bin, keep in zip(pairs_all, has_enough_samples):
                        if keep:
                            pairs.append(sample_n(pairs_bin, num_per_bin_2, seed))
                    pairs = np.concatenate(pairs, 0)
                else:
                    pairs = (mat > self.conf.min_overlap) & (
                        mat <= self.conf.max_overlap
                    )
                    pairs = np.stack(np.where(pairs), -1)

                pairs = [(scene, ind[i], ind[j], mat[i, j]) for i, j in pairs]
                if num_neg is not None:
                    neg_pairs = np.stack(np.where(mat <= 0.0), -1)
                    neg_pairs = sample_n(neg_pairs, num_neg, seed)
                    pairs += [(scene, ind[i], ind[j], mat[i, j]) for i, j in neg_pairs]
                self.items.extend(pairs)
        if self.conf.views == 2 and self.conf.sort_by_overlap:
            self.items.sort(key=lambda i: i[-1], reverse=True)
        else:
            np.random.RandomState(seed).shuffle(self.items)

    def _read_view(self, scene, idx):
        path = self.root / self.images[scene][idx]

        # read pose data
        K = self.intrinsics[scene][idx].astype(np.float32, copy=False)
        T = self.poses[scene][idx].astype(np.float32, copy=False)

        # read image
        if self.conf.read_image:
            img = load_image(self.root / self.images[scene][idx], self.conf.grayscale)
        else:
            size = PIL.Image.open(path).size[::-1]
            img = torch.zeros(
                [3 - 2 * int(self.conf.grayscale), size[0], size[1]]
            ).float()

        # read depth
        if self.conf.read_depth:
            # depth_path = (
            #     self.root / self.conf.depth_subpath / scene / (path.stem + ".h5")
            # )
            depth_subpath = self.depths[scene][idx]
            depth_id = depth_subpath.split('/')[-1][:-3]
            assert depth_id == path.stem
            depth_path = self.root / depth_subpath
            with h5py.File(str(depth_path), "r") as f:
                depth = f["/depth"].__array__().astype(np.float32, copy=False)
                depth = torch.Tensor(depth)[None]
            assert depth.shape[-2:] == img.shape[-2:]
        else:
            depth = None

        # add random rotations
        do_rotate = self.conf.p_rotate > 0.0 and self.split == "train"
        if do_rotate:
            p = self.conf.p_rotate
            k = 0
            if np.random.rand() < p:
                k = np.random.choice(2, 1, replace=False)[0] * 2 - 1
                img = np.rot90(img, k=-k, axes=(-2, -1))
                if self.conf.read_depth:
                    depth = np.rot90(depth, k=-k, axes=(-2, -1)).copy()
                K = rotate_intrinsics(K, img.shape, k + 2)
                T = rotate_pose_inplane(T, k + 2)

        name = path.name

        data = self.preprocessor(img)
        if depth is not None:
            data["depth"] = self.preprocessor(depth, interpolation="nearest")["image"][
                0
            ]
        K = scale_intrinsics(K, data["scales"])

        data = {
            "name": name,
            "scene": scene,
            "T_w2cam": Pose.from_4x4mat(T),
            "depth": depth,
            "camera": Camera.from_calibration_matrix(K).float(),
            **data,
        }

        if self.conf.load_features.do:
            features = self.feature_loader({k: [v] for k, v in data.items()})
            if do_rotate and k != 0:
                # ang = np.deg2rad(k * 90.)
                kpts = features["keypoints"].copy()
                x, y = kpts[:, 0].copy(), kpts[:, 1].copy()
                w, h = data["image_size"]
                if k == 1:
                    kpts[:, 0] = w - y
                    kpts[:, 1] = x
                elif k == -1:
                    kpts[:, 0] = y
                    kpts[:, 1] = h - x

                else:
                    raise ValueError
                features["keypoints"] = kpts

            data = {"cache": features, **data}
        return data

    def __getitem__(self, idx):
        if self.conf.reseed:
            with fork_rng(self.conf.seed + idx, False):
                return self.getitem(idx)
        else:
            return self.getitem(idx)

    def getitem(self, idx):
        if self.conf.views == 2:
            if isinstance(idx, list):
                scene, idx0, idx1, overlap = idx
            else:
                scene, idx0, idx1, overlap = self.items[idx]
            data0 = self._read_view(scene, idx0)
            data1 = self._read_view(scene, idx1)
            data = {
                "view0": data0,
                "view1": data1,
            }
            data["T_0to1"] = data1["T_w2cam"] @ data0["T_w2cam"].inv()
            data["T_1to0"] = data0["T_w2cam"] @ data1["T_w2cam"].inv()
            data["overlap_0to1"] = overlap
            data["name"] = f"{scene}/{data0['name']}_{data1['name']}"
        else:
            assert self.conf.views == 1
            scene, idx0 = self.items[idx]
            data = self._read_view(scene, idx0)
        data["scene"] = scene
        data["idx"] = idx
        return data

    def __len__(self):
        return len(self.items)


class _TripletDataset(_PairDataset):
    def sample_new_items(self, seed):
        logging.info("Sampling new triplets with seed %d", seed)
        self.items = []
        split = self.split
        num = self.conf[self.split + "_num_per_scene"]
        if split != "train" and self.conf[split + "_pairs"] is not None:
            if Path(self.conf[split + "_pairs"]).exists():
                pairs_path = Path(self.conf[split + "_pairs"])
            else:
                pairs_path = DATA_PATH / "configs" / self.conf[split + "_pairs"]
            for line in pairs_path.read_text().rstrip("\n").split("\n"):
                im0, im1, im2 = line.split(" ")
                assert im0[:4] == im1[:4]
                scene = im1[:4]
                idx0 = np.where(self.images[scene] == im0)
                idx1 = np.where(self.images[scene] == im1)
                idx2 = np.where(self.images[scene] == im2)
                self.items.append((scene, idx0, idx1, idx2, 1.0, 1.0, 1.0))
        else:
            for scene in self.scenes:
                path = self.info_dir / (scene + ".npz")
                assert path.exists(), path
                info = np.load(str(path), allow_pickle=True)
                if self.conf.num_overlap_bins > 1:
                    raise NotImplementedError("TODO")
                valid = (self.images[scene] != None) & (  # noqa: E711
                    self.depth[scene] != None  # noqa: E711
                )
                ind = np.where(valid)[0]
                mat = info["overlap_matrix"][valid][:, valid]
                good = (mat > self.conf.min_overlap) & (mat <= self.conf.max_overlap)
                triplets = []
                if self.conf.triplet_enforce_overlap:
                    pairs = np.stack(np.where(good), -1)
                    for i0, i1 in pairs:
                        for i2 in pairs[pairs[:, 0] == i0, 1]:
                            if good[i1, i2]:
                                triplets.append((i0, i1, i2))
                    if len(triplets) > num:
                        selected = np.random.RandomState(seed).choice(
                            len(triplets), num, replace=False
                        )
                        selected = range(num)
                        triplets = np.array(triplets)[selected]
                else:
                    # we first enforce that each row has >1 pairs
                    non_unique = good.sum(-1) > 1
                    ind_r = np.where(non_unique)[0]
                    good = good[non_unique]
                    pairs = np.stack(np.where(good), -1)
                    if len(pairs) > num:
                        selected = np.random.RandomState(seed).choice(
                            len(pairs), num, replace=False
                        )
                        pairs = pairs[selected]
                    for idx, (k, i) in enumerate(pairs):
                        # We now sample a j from row k s.t. i != j
                        possible_j = np.where(good[k])[0]
                        possible_j = possible_j[possible_j != i]
                        selected = np.random.RandomState(seed + idx).choice(
                            len(possible_j), 1, replace=False
                        )[0]
                        triplets.append((ind_r[k], i, possible_j[selected]))
                    triplets = [
                        (scene, ind[k], ind[i], ind[j], mat[k, i], mat[k, j], mat[i, j])
                        for k, i, j in triplets
                    ]
                    self.items.extend(triplets)
        np.random.RandomState(seed).shuffle(self.items)

    def __getitem__(self, idx):
        scene, idx0, idx1, idx2, overlap01, overlap02, overlap12 = self.items[idx]
        data0 = self._read_view(scene, idx0)
        data1 = self._read_view(scene, idx1)
        data2 = self._read_view(scene, idx2)
        data = {
            "view0": data0,
            "view1": data1,
            "view2": data2,
        }
        data["T_0to1"] = data1["T_w2cam"] @ data0["T_w2cam"].inv()
        data["T_0to2"] = data2["T_w2cam"] @ data0["T_w2cam"].inv()
        data["T_1to2"] = data2["T_w2cam"] @ data1["T_w2cam"].inv()
        data["T_1to0"] = data0["T_w2cam"] @ data1["T_w2cam"].inv()
        data["T_2to0"] = data0["T_w2cam"] @ data2["T_w2cam"].inv()
        data["T_2to1"] = data1["T_w2cam"] @ data2["T_w2cam"].inv()

        data["overlap_0to1"] = overlap01
        data["overlap_0to2"] = overlap02
        data["overlap_1to2"] = overlap12
        data["scene"] = scene
        data["name"] = f"{scene}/{data0['name']}_{data1['name']}_{data2['name']}"
        return data

    def __len__(self):
        return len(self.items)


def visualize(args):
    conf = {
        "min_overlap": 0.1,
        "max_overlap": 0.7,
        "num_overlap_bins": 3,
        "sort_by_overlap": False,
        "train_num_per_scene": 5,
        "batch_size": 1,
        "num_workers": 0,
        "prefetch_factor": None,
        "val_num_per_scene": None,
    }
    conf = OmegaConf.merge(conf, OmegaConf.from_cli(args.dotlist))
    dataset = MegaDepth(conf)
    loader = dataset.get_data_loader(args.split)
    logger.info("The dataset has elements.", len(loader))

    with fork_rng(seed=dataset.conf.seed):
        images, depths = [], []
        for _, data in zip(range(args.num_items), loader):
            images.append(
                [
                    data[f"view{i}"]["image"][0].permute(1, 2, 0)
                    for i in range(dataset.conf.views)
                ]
            )
            depths.append(
                [data[f"view{i}"]["depth"][0] for i in range(dataset.conf.views)]
            )

    axes = plot_image_grid(images, dpi=args.dpi)
    for i in range(len(images)):
        plot_heatmaps(depths[i], axes=axes[i])
    plt.show()


if __name__ == "__main__":
    from .. import logger  # overwrite the logger

    parser = argparse.ArgumentParser()
    parser.add_argument("--split", type=str, default="val")
    parser.add_argument("--num_items", type=int, default=4)
    parser.add_argument("--dpi", type=int, default=100)
    parser.add_argument("dotlist", nargs="*")
    args = parser.parse_intermixed_args()
    visualize(args)