File size: 9,585 Bytes
c0283b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import functools
import traceback
from copy import deepcopy

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.widgets import Button
from omegaconf import OmegaConf

from ..datasets.base_dataset import collate

# from ..eval.export_predictions import load_predictions
from ..models.cache_loader import CacheLoader
from .tools import RadioHideTool


class GlobalFrame:
    default_conf = {
        "x": "???",
        "y": "???",
        "diff": False,
        "child": {},
        "remove_outliers": False,
    }

    child_frame = None  # MatchFrame

    childs = []

    lines = []

    scatters = {}

    def __init__(
        self, conf, results, loader, predictions, title=None, child_frame=None
    ):
        self.child_frame = child_frame
        if self.child_frame is not None:
            # We do NOT merge inside the child frame to keep settings across figs
            self.default_conf["child"] = self.child_frame.default_conf

        self.conf = OmegaConf.merge(self.default_conf, conf)
        self.results = results
        self.loader = loader
        self.predictions = predictions
        self.metrics = set()
        for k, v in results.items():
            self.metrics.update(v.keys())
        self.metrics = sorted(list(self.metrics))

        self.conf.x = conf["x"] if conf["x"] else self.metrics[0]
        self.conf.y = conf["y"] if conf["y"] else self.metrics[1]

        assert self.conf.x in self.metrics
        assert self.conf.y in self.metrics

        self.names = list(results)
        self.fig, self.axes = self.init_frame()
        if title is not None:
            self.fig.canvas.manager.set_window_title(title)

        self.xradios = self.fig.canvas.manager.toolmanager.add_tool(
            "x",
            RadioHideTool,
            options=self.metrics,
            callback_fn=self.update_x,
            active=self.conf.x,
            keymap="x",
        )

        self.yradios = self.fig.canvas.manager.toolmanager.add_tool(
            "y",
            RadioHideTool,
            options=self.metrics,
            callback_fn=self.update_y,
            active=self.conf.y,
            keymap="y",
        )
        if self.fig.canvas.manager.toolbar is not None:
            self.fig.canvas.manager.toolbar.add_tool("x", "navigation")
            self.fig.canvas.manager.toolbar.add_tool("y", "navigation")

    def init_frame(self):
        """initialize frame"""
        fig, ax = plt.subplots()
        ax.set_title("click on points")
        diffb_ax = fig.add_axes([0.01, 0.02, 0.12, 0.06])
        self.diffb = Button(diffb_ax, label="diff_only")
        self.diffb.on_clicked(self.diff_clicked)
        fig.canvas.mpl_connect("pick_event", self.on_scatter_pick)
        fig.canvas.mpl_connect("motion_notify_event", self.hover)
        return fig, ax

    def draw(self):
        """redraw content in frame"""
        self.scatters = {}
        self.axes.clear()
        self.axes.set_xlabel(self.conf.x)
        self.axes.set_ylabel(self.conf.y)

        refx = 0.0
        refy = 0.0
        x_cat = isinstance(self.results[self.names[0]][self.conf.x][0], (bytes, str))
        y_cat = isinstance(self.results[self.names[0]][self.conf.y][0], (bytes, str))

        if self.conf.diff:
            if not x_cat:
                refx = np.array(self.results[self.names[0]][self.conf.x])
            if not y_cat:
                refy = np.array(self.results[self.names[0]][self.conf.y])
        for name in list(self.results.keys()):
            x = np.array(self.results[name][self.conf.x])
            y = np.array(self.results[name][self.conf.y])

            if x_cat and np.char.isdigit(x.astype(str)).all():
                x = x.astype(int)
            if y_cat and np.char.isdigit(y.astype(str)).all():
                y = y.astype(int)

            x = x if x_cat else x - refx
            y = y if y_cat else y - refy

            (s,) = self.axes.plot(
                x, y, "o", markersize=3, label=name, picker=True, pickradius=5
            )
            self.scatters[name] = s

            if x_cat and not y_cat:
                xunique, ind, xinv, xbin = np.unique(
                    x, return_inverse=True, return_counts=True, return_index=True
                )
                ybin = np.bincount(xinv, weights=y)
                sort_ax = np.argsort(ind)
                self.axes.step(
                    xunique[sort_ax],
                    (ybin / xbin)[sort_ax],
                    where="mid",
                    color=s.get_color(),
                )

            if not x_cat:
                xavg = np.nan_to_num(x).mean()
                self.axes.axvline(xavg, c=s.get_color(), zorder=1, alpha=1.0)
                xmed = np.median(x - refx)
                self.axes.axvline(
                    xmed,
                    c=s.get_color(),
                    zorder=0,
                    alpha=0.5,
                    linestyle="dashed",
                    visible=False,
                )

            if not y_cat:
                yavg = np.nan_to_num(y).mean()
                self.axes.axhline(yavg, c=s.get_color(), zorder=1, alpha=0.5)
                ymed = np.median(y - refy)
                self.axes.axhline(
                    ymed,
                    c=s.get_color(),
                    zorder=0,
                    alpha=0.5,
                    linestyle="dashed",
                    visible=False,
                )
            if x_cat and x.dtype == object and xunique.shape[0] > 5:
                self.axes.set_xticklabels(xunique[sort_ax], rotation=90)
        self.axes.legend()

    def on_scatter_pick(self, handle):
        try:
            art = handle.artist
            try:
                event = handle.mouseevent.button.value
            except AttributeError:
                return
            name = art.get_label()
            ind = handle.ind[0]
            # draw lines
            self.spawn_child(name, ind, event=event)
        except Exception:
            traceback.print_exc()
            exit(0)

    def spawn_child(self, model_name, ind, event=None):
        [line.remove() for line in self.lines]
        self.lines = []

        x_source = self.scatters[model_name].get_xdata()[ind]
        y_source = self.scatters[model_name].get_ydata()[ind]
        for oname in self.names:
            xn = self.scatters[oname].get_xdata()[ind]
            yn = self.scatters[oname].get_ydata()[ind]

            (ln,) = self.axes.plot([x_source, xn], [y_source, yn], "r")
            self.lines.append(ln)

        self.fig.canvas.draw_idle()

        if self.child_frame is None:
            return

        data = collate([self.loader.dataset[ind]])

        preds = {}

        for name, pfile in self.predictions.items():
            preds[name] = CacheLoader({"path": str(pfile), "add_data_path": False})(
                data
            )
        summaries_i = {
            name: {k: v[ind] for k, v in res.items() if k != "names"}
            for name, res in self.results.items()
        }
        frame = self.child_frame(
            self.conf.child,
            deepcopy(data),
            preds,
            title=str(data["name"][0]),
            event=event,
            summaries=summaries_i,
        )

        frame.fig.canvas.mpl_connect(
            "key_press_event",
            functools.partial(
                self.on_childframe_key_event, frame=frame, ind=ind, event=event
            ),
        )
        self.childs.append(frame)
        # if plt.rcParams['backend'] == 'webagg':
        #     self.fig.canvas.manager_class.refresh_all()
        self.childs[-1].fig.show()

    def hover(self, event):
        if event.inaxes == self.axes:
            for _, s in self.scatters.items():
                cont, ind = s.contains(event)
                if cont:
                    ind = ind["ind"][0]
                    xdata, ydata = s.get_data()
                    [line.remove() for line in self.lines]
                    self.lines = []

                    for oname in self.names:
                        xn = self.scatters[oname].get_xdata()[ind]
                        yn = self.scatters[oname].get_ydata()[ind]

                        (ln,) = self.axes.plot(
                            [xdata[ind], xn],
                            [ydata[ind], yn],
                            "black",
                            zorder=0,
                            alpha=0.5,
                        )
                        self.lines.append(ln)
                    self.fig.canvas.draw_idle()
                    break

    def diff_clicked(self, args):
        self.conf.diff = not self.conf.diff
        self.draw()
        self.fig.canvas.draw_idle()

    def update_x(self, x):
        self.conf.x = x
        self.draw()

    def update_y(self, y):
        self.conf.y = y
        self.draw()

    def on_childframe_key_event(self, key_event, frame, ind, event):
        if key_event.key == "delete":
            plt.close(frame.fig)
            self.childs.remove(frame)
        elif key_event.key in ["left", "right", "shift+left", "shift+right"]:
            key = key_event.key
            if key.startswith("shift+"):
                key = key.replace("shift+", "")
            else:
                plt.close(frame.fig)
                self.childs.remove(frame)
            new_ind = ind + 1 if key_event.key == "right" else ind - 1
            self.spawn_child(
                self.names[0],
                new_ind % len(self.loader),
                event=event,
            )