File size: 6,832 Bytes
f90cbcf
 
 
 
 
 
 
4c12b36
f90cbcf
 
 
 
 
 
 
 
 
 
4c12b36
f90cbcf
4c12b36
 
 
 
 
 
 
 
 
 
 
 
 
 
f90cbcf
4c12b36
f90cbcf
 
 
4c12b36
 
 
f90cbcf
 
 
4c12b36
 
 
f90cbcf
 
 
 
 
 
 
 
4c12b36
f90cbcf
 
 
 
 
 
 
 
4c12b36
f90cbcf
4c12b36
 
 
f90cbcf
4c12b36
f90cbcf
 
4c12b36
 
 
 
 
 
 
f90cbcf
4c12b36
 
 
 
f90cbcf
 
 
4c12b36
f90cbcf
 
 
4c12b36
 
 
 
f90cbcf
 
 
 
 
4c12b36
 
f90cbcf
4c12b36
 
 
f90cbcf
4c12b36
 
 
 
 
 
 
 
 
f90cbcf
 
4c12b36
 
 
 
 
 
 
 
 
 
 
 
f90cbcf
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
f90cbcf
 
4c12b36
 
 
 
 
 
 
 
 
 
 
 
 
f90cbcf
 
 
 
4c12b36
f90cbcf
4c12b36
f90cbcf
4c12b36
 
f90cbcf
 
 
4c12b36
 
 
 
 
 
 
 
 
f90cbcf
4c12b36
 
f90cbcf
 
 
4c12b36
f90cbcf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import random
from PIL import Image
import cv2
import h5py
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader, ConcatDataset

import torchvision.transforms.functional as tvf
import kornia.augmentation as K
import os.path as osp
import matplotlib.pyplot as plt
import roma
from roma.utils import get_depth_tuple_transform_ops, get_tuple_transform_ops
from roma.utils.transforms import GeometricSequential
from tqdm import tqdm


class ScanNetScene:
    def __init__(
        self,
        data_root,
        scene_info,
        ht=384,
        wt=512,
        min_overlap=0.0,
        shake_t=0,
        rot_prob=0.0,
        use_horizontal_flip_aug=False,
    ) -> None:
        self.scene_root = osp.join(data_root, "scans", "scans_train")
        self.data_names = scene_info["name"]
        self.overlaps = scene_info["score"]
        # Only sample 10s
        valid = (self.data_names[:, -2:] % 10).sum(axis=-1) == 0
        self.overlaps = self.overlaps[valid]
        self.data_names = self.data_names[valid]
        if len(self.data_names) > 10000:
            pairinds = np.random.choice(
                np.arange(0, len(self.data_names)), 10000, replace=False
            )
            self.data_names = self.data_names[pairinds]
            self.overlaps = self.overlaps[pairinds]
        self.im_transform_ops = get_tuple_transform_ops(resize=(ht, wt), normalize=True)
        self.depth_transform_ops = get_depth_tuple_transform_ops(
            resize=(ht, wt), normalize=False
        )
        self.wt, self.ht = wt, ht
        self.shake_t = shake_t
        self.H_generator = GeometricSequential(K.RandomAffine(degrees=90, p=rot_prob))
        self.use_horizontal_flip_aug = use_horizontal_flip_aug

    def load_im(self, im_B, crop=None):
        im = Image.open(im_B)
        return im

    def load_depth(self, depth_ref, crop=None):
        depth = cv2.imread(str(depth_ref), cv2.IMREAD_UNCHANGED)
        depth = depth / 1000
        depth = torch.from_numpy(depth).float()  # (h, w)
        return depth

    def __len__(self):
        return len(self.data_names)

    def scale_intrinsic(self, K, wi, hi):
        sx, sy = self.wt / wi, self.ht / hi
        sK = torch.tensor([[sx, 0, 0], [0, sy, 0], [0, 0, 1]])
        return sK @ K

    def horizontal_flip(self, im_A, im_B, depth_A, depth_B, K_A, K_B):
        im_A = im_A.flip(-1)
        im_B = im_B.flip(-1)
        depth_A, depth_B = depth_A.flip(-1), depth_B.flip(-1)
        flip_mat = torch.tensor([[-1, 0, self.wt], [0, 1, 0], [0, 0, 1.0]]).to(
            K_A.device
        )
        K_A = flip_mat @ K_A
        K_B = flip_mat @ K_B

        return im_A, im_B, depth_A, depth_B, K_A, K_B

    def read_scannet_pose(self, path):
        """Read ScanNet's Camera2World pose and transform it to World2Camera.

        Returns:
            pose_w2c (np.ndarray): (4, 4)
        """
        cam2world = np.loadtxt(path, delimiter=" ")
        world2cam = np.linalg.inv(cam2world)
        return world2cam

    def read_scannet_intrinsic(self, path):
        """Read ScanNet's intrinsic matrix and return the 3x3 matrix."""
        intrinsic = np.loadtxt(path, delimiter=" ")
        return torch.tensor(intrinsic[:-1, :-1], dtype=torch.float)

    def __getitem__(self, pair_idx):
        # read intrinsics of original size
        data_name = self.data_names[pair_idx]
        scene_name, scene_sub_name, stem_name_1, stem_name_2 = data_name
        scene_name = f"scene{scene_name:04d}_{scene_sub_name:02d}"

        # read the intrinsic of depthmap
        K1 = K2 = self.read_scannet_intrinsic(
            osp.join(self.scene_root, scene_name, "intrinsic", "intrinsic_color.txt")
        )  # the depth K is not the same, but doesnt really matter
        # read and compute relative poses
        T1 = self.read_scannet_pose(
            osp.join(self.scene_root, scene_name, "pose", f"{stem_name_1}.txt")
        )
        T2 = self.read_scannet_pose(
            osp.join(self.scene_root, scene_name, "pose", f"{stem_name_2}.txt")
        )
        T_1to2 = torch.tensor(np.matmul(T2, np.linalg.inv(T1)), dtype=torch.float)[
            :4, :4
        ]  # (4, 4)

        # Load positive pair data
        im_A_ref = os.path.join(
            self.scene_root, scene_name, "color", f"{stem_name_1}.jpg"
        )
        im_B_ref = os.path.join(
            self.scene_root, scene_name, "color", f"{stem_name_2}.jpg"
        )
        depth_A_ref = os.path.join(
            self.scene_root, scene_name, "depth", f"{stem_name_1}.png"
        )
        depth_B_ref = os.path.join(
            self.scene_root, scene_name, "depth", f"{stem_name_2}.png"
        )

        im_A = self.load_im(im_A_ref)
        im_B = self.load_im(im_B_ref)
        depth_A = self.load_depth(depth_A_ref)
        depth_B = self.load_depth(depth_B_ref)

        # Recompute camera intrinsic matrix due to the resize
        K1 = self.scale_intrinsic(K1, im_A.width, im_A.height)
        K2 = self.scale_intrinsic(K2, im_B.width, im_B.height)
        # Process images
        im_A, im_B = self.im_transform_ops((im_A, im_B))
        depth_A, depth_B = self.depth_transform_ops(
            (depth_A[None, None], depth_B[None, None])
        )
        if self.use_horizontal_flip_aug:
            if np.random.rand() > 0.5:
                im_A, im_B, depth_A, depth_B, K1, K2 = self.horizontal_flip(
                    im_A, im_B, depth_A, depth_B, K1, K2
                )

        data_dict = {
            "im_A": im_A,
            "im_B": im_B,
            "im_A_depth": depth_A[0, 0],
            "im_B_depth": depth_B[0, 0],
            "K1": K1,
            "K2": K2,
            "T_1to2": T_1to2,
        }
        return data_dict


class ScanNetBuilder:
    def __init__(self, data_root="data/scannet") -> None:
        self.data_root = data_root
        self.scene_info_root = os.path.join(data_root, "scannet_indices")
        self.all_scenes = os.listdir(self.scene_info_root)

    def build_scenes(self, split="train", min_overlap=0.0, **kwargs):
        # Note: split doesn't matter here as we always use same scannet_train scenes
        scene_names = self.all_scenes
        scenes = []
        for scene_name in tqdm(scene_names, disable=roma.RANK > 0):
            scene_info = np.load(
                os.path.join(self.scene_info_root, scene_name), allow_pickle=True
            )
            scenes.append(
                ScanNetScene(
                    self.data_root, scene_info, min_overlap=min_overlap, **kwargs
                )
            )
        return scenes

    def weight_scenes(self, concat_dataset, alpha=0.5):
        ns = []
        for d in concat_dataset.datasets:
            ns.append(len(d))
        ws = torch.cat([torch.ones(n) / n**alpha for n in ns])
        return ws