File size: 8,199 Bytes
5bf9d48
9223079
5bf9d48
9223079
 
5bf9d48
 
9223079
5bf9d48
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf9d48
9223079
 
5bf9d48
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf9d48
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf9d48
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf9d48
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import glob
import logging
import os
from pathlib import Path

import numpy as np

from ...utils.parsers import parse_retrieval
from ...utils.read_write_model import (
    Camera,
    Image,
    qvec2rotmat,
    rotmat2qvec,
    write_model,
)

logger = logging.getLogger(__name__)


def get_timestamps(files, idx):
    """Extract timestamps from a pose or relocalization file."""
    lines = []
    for p in files.parent.glob(files.name):
        with open(p) as f:
            lines += f.readlines()
    timestamps = set()
    for line in lines:
        line = line.rstrip("\n")
        if line[0] == "#" or line == "":
            continue
        ts = line.replace(",", " ").split()[idx]
        timestamps.add(ts)
    return timestamps


def delete_unused_images(root, timestamps):
    """Delete all images in root if they are not contained in timestamps."""
    images = glob.glob((root / "**/*.png").as_posix(), recursive=True)
    deleted = 0
    for image in images:
        ts = Path(image).stem
        if ts not in timestamps:
            os.remove(image)
            deleted += 1
    logger.info(f"Deleted {deleted} images in {root}.")


def camera_from_calibration_file(id_, path):
    """Create a COLMAP camera from an MLAD calibration file."""
    with open(path, "r") as f:
        data = f.readlines()
    model, fx, fy, cx, cy = data[0].split()[:5]
    width, height = data[1].split()
    assert model == "Pinhole"
    model_name = "PINHOLE"
    params = [float(i) for i in [fx, fy, cx, cy]]
    camera = Camera(
        id=id_, model=model_name, width=int(width), height=int(height), params=params
    )
    return camera


def parse_poses(path, colmap=False):
    """Parse a list of poses in COLMAP or MLAD quaternion convention."""
    poses = []
    with open(path) as f:
        for line in f.readlines():
            line = line.rstrip("\n")
            if line[0] == "#" or line == "":
                continue
            data = line.replace(",", " ").split()
            ts, p = data[0], np.array(data[1:], float)
            if colmap:
                q, t = np.split(p, [4])
            else:
                t, q = np.split(p, [3])
                q = q[[3, 0, 1, 2]]  # xyzw to wxyz
            R = qvec2rotmat(q)
            poses.append((ts, R, t))
    return poses


def parse_relocalization(path, has_poses=False):
    """Parse a relocalization file, possibly with poses."""
    reloc = []
    with open(path) as f:
        for line in f.readlines():
            line = line.rstrip("\n")
            if line[0] == "#" or line == "":
                continue
            data = line.replace(",", " ").split()
            out = data[:2]  # ref_ts, q_ts
            if has_poses:
                assert len(data) == 9
                t, q = np.split(np.array(data[2:], float), [3])
                q = q[[3, 0, 1, 2]]  # xyzw to wxyz
                R = qvec2rotmat(q)
                out += [R, t]
            reloc.append(out)
    return reloc


def build_empty_colmap_model(root, sfm_dir):
    """Build a COLMAP model with images and cameras only."""
    calibration = "Calibration/undistorted_calib_{}.txt"
    cam0 = camera_from_calibration_file(0, root / calibration.format(0))
    cam1 = camera_from_calibration_file(1, root / calibration.format(1))
    cameras = {0: cam0, 1: cam1}

    T_0to1 = np.loadtxt(root / "Calibration/undistorted_calib_stereo.txt")
    poses = parse_poses(root / "poses.txt")
    images = {}
    id_ = 0
    for ts, R_cam0_to_w, t_cam0_to_w in poses:
        R_w_to_cam0 = R_cam0_to_w.T
        t_w_to_cam0 = -(R_w_to_cam0 @ t_cam0_to_w)

        R_w_to_cam1 = T_0to1[:3, :3] @ R_w_to_cam0
        t_w_to_cam1 = T_0to1[:3, :3] @ t_w_to_cam0 + T_0to1[:3, 3]

        for idx, (R_w_to_cam, t_w_to_cam) in enumerate(
            zip([R_w_to_cam0, R_w_to_cam1], [t_w_to_cam0, t_w_to_cam1])
        ):
            image = Image(
                id=id_,
                qvec=rotmat2qvec(R_w_to_cam),
                tvec=t_w_to_cam,
                camera_id=idx,
                name=f"cam{idx}/{ts}.png",
                xys=np.zeros((0, 2), float),
                point3D_ids=np.full(0, -1, int),
            )
            images[id_] = image
            id_ += 1

    sfm_dir.mkdir(exist_ok=True, parents=True)
    write_model(cameras, images, {}, path=str(sfm_dir), ext=".bin")


def generate_query_lists(timestamps, seq_dir, out_path):
    """Create a list of query images with intrinsics from timestamps."""
    cam0 = camera_from_calibration_file(
        0, seq_dir / "Calibration/undistorted_calib_0.txt"
    )
    intrinsics = [cam0.model, cam0.width, cam0.height] + cam0.params
    intrinsics = [str(p) for p in intrinsics]
    data = map(lambda ts: " ".join([f"cam0/{ts}.png"] + intrinsics), timestamps)
    with open(out_path, "w") as f:
        f.write("\n".join(data))


def generate_localization_pairs(sequence, reloc, num, ref_pairs, out_path):
    """Create the matching pairs for the localization.
    We simply lookup the corresponding reference frame
    and extract its `num` closest frames from the existing pair list.
    """
    if "test" in sequence:
        # hard pairs will be overwritten by easy ones if available
        relocs = [str(reloc).replace("*", d) for d in ["hard", "moderate", "easy"]]
    else:
        relocs = [reloc]
    query_to_ref_ts = {}
    for reloc in relocs:
        with open(reloc, "r") as f:
            for line in f.readlines():
                line = line.rstrip("\n")
                if line[0] == "#" or line == "":
                    continue
                ref_ts, q_ts = line.split()[:2]
                query_to_ref_ts[q_ts] = ref_ts

    ts_to_name = "cam0/{}.png".format
    ref_pairs = parse_retrieval(ref_pairs)
    loc_pairs = []
    for q_ts, ref_ts in query_to_ref_ts.items():
        ref_name = ts_to_name(ref_ts)
        selected = [ref_name] + ref_pairs[ref_name][: num - 1]
        loc_pairs.extend([" ".join((ts_to_name(q_ts), s)) for s in selected])
    with open(out_path, "w") as f:
        f.write("\n".join(loc_pairs))


def prepare_submission(results, relocs, poses_path, out_dir):
    """Obtain relative poses from estimated absolute and reference poses."""
    gt_poses = parse_poses(poses_path)
    all_T_ref0_to_w = {ts: (R, t) for ts, R, t in gt_poses}

    pred_poses = parse_poses(results, colmap=True)
    all_T_w_to_q0 = {Path(name).stem: (R, t) for name, R, t in pred_poses}

    for reloc in relocs.parent.glob(relocs.name):
        relative_poses = []
        reloc_ts = parse_relocalization(reloc)
        for ref_ts, q_ts in reloc_ts:
            R_w_to_q0, t_w_to_q0 = all_T_w_to_q0[q_ts]
            R_ref0_to_w, t_ref0_to_w = all_T_ref0_to_w[ref_ts]

            R_ref0_to_q0 = R_w_to_q0 @ R_ref0_to_w
            t_ref0_to_q0 = R_w_to_q0 @ t_ref0_to_w + t_w_to_q0

            tvec = t_ref0_to_q0.tolist()
            qvec = rotmat2qvec(R_ref0_to_q0)[[1, 2, 3, 0]]  # wxyz to xyzw

            out = [ref_ts, q_ts] + list(map(str, tvec)) + list(map(str, qvec))
            relative_poses.append(" ".join(out))

        out_path = out_dir / reloc.name
        with open(out_path, "w") as f:
            f.write("\n".join(relative_poses))
        logger.info(f"Submission file written to {out_path}.")


def evaluate_submission(submission_dir, relocs, ths=[0.1, 0.2, 0.5]):
    """Compute the relocalization recall from predicted and ground truth poses."""
    for reloc in relocs.parent.glob(relocs.name):
        poses_gt = parse_relocalization(reloc, has_poses=True)
        poses_pred = parse_relocalization(submission_dir / reloc.name, has_poses=True)
        poses_pred = {(ref_ts, q_ts): (R, t) for ref_ts, q_ts, R, t in poses_pred}

        error = []
        for ref_ts, q_ts, R_gt, t_gt in poses_gt:
            R, t = poses_pred[(ref_ts, q_ts)]
            e = np.linalg.norm(t - t_gt)
            error.append(e)

        error = np.array(error)
        recall = [np.mean(error <= th) for th in ths]
        s = f"Relocalization evaluation {submission_dir.name}/{reloc.name}\n"
        s += " / ".join([f"{th:>7}m" for th in ths]) + "\n"
        s += " / ".join([f"{100*r:>7.3f}%" for r in recall])
        logger.info(s)