File size: 4,922 Bytes
9223079
5bf9d48
 
9223079
 
 
5bf9d48
9223079
5bf9d48
9223079
5bf9d48
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf9d48
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import logging

import cv2
import numpy as np

from hloc.utils.read_write_model import (
    qvec2rotmat,
    read_cameras_binary,
    read_cameras_text,
    read_images_binary,
    read_images_text,
    read_model,
    write_model,
)

logger = logging.getLogger(__name__)


def scale_sfm_images(full_model, scaled_model, image_dir):
    """Duplicate the provided model and scale the camera intrinsics so that
    they match the original image resolution - makes everything easier.
    """
    logger.info("Scaling the COLMAP model to the original image size.")
    scaled_model.mkdir(exist_ok=True)
    cameras, images, points3D = read_model(full_model)

    scaled_cameras = {}
    for id_, image in images.items():
        name = image.name
        img = cv2.imread(str(image_dir / name))
        assert img is not None, image_dir / name
        h, w = img.shape[:2]

        cam_id = image.camera_id
        if cam_id in scaled_cameras:
            assert scaled_cameras[cam_id].width == w
            assert scaled_cameras[cam_id].height == h
            continue

        camera = cameras[cam_id]
        assert camera.model == "SIMPLE_RADIAL"
        sx = w / camera.width
        sy = h / camera.height
        assert sx == sy, (sx, sy)
        scaled_cameras[cam_id] = camera._replace(
            width=w, height=h, params=camera.params * np.array([sx, sx, sy, 1.0])
        )

    write_model(scaled_cameras, images, points3D, scaled_model)


def create_query_list_with_intrinsics(
    model, out, list_file=None, ext=".bin", image_dir=None
):
    """Create a list of query images with intrinsics from the colmap model."""
    if ext == ".bin":
        images = read_images_binary(model / "images.bin")
        cameras = read_cameras_binary(model / "cameras.bin")
    else:
        images = read_images_text(model / "images.txt")
        cameras = read_cameras_text(model / "cameras.txt")

    name2id = {image.name: i for i, image in images.items()}
    if list_file is None:
        names = list(name2id)
    else:
        with open(list_file, "r") as f:
            names = f.read().rstrip().split("\n")
    data = []
    for name in names:
        image = images[name2id[name]]
        camera = cameras[image.camera_id]
        w, h, params = camera.width, camera.height, camera.params

        if image_dir is not None:
            # Check the original image size and rescale the camera intrinsics
            img = cv2.imread(str(image_dir / name))
            assert img is not None, image_dir / name
            h_orig, w_orig = img.shape[:2]
            assert camera.model == "SIMPLE_RADIAL"
            sx = w_orig / w
            sy = h_orig / h
            assert sx == sy, (sx, sy)
            w, h = w_orig, h_orig
            params = params * np.array([sx, sx, sy, 1.0])

        p = [name, camera.model, w, h] + params.tolist()
        data.append(" ".join(map(str, p)))
    with open(out, "w") as f:
        f.write("\n".join(data))


def evaluate(model, results, list_file=None, ext=".bin", only_localized=False):
    predictions = {}
    with open(results, "r") as f:
        for data in f.read().rstrip().split("\n"):
            data = data.split()
            name = data[0]
            q, t = np.split(np.array(data[1:], float), [4])
            predictions[name] = (qvec2rotmat(q), t)
    if ext == ".bin":
        images = read_images_binary(model / "images.bin")
    else:
        images = read_images_text(model / "images.txt")
    name2id = {image.name: i for i, image in images.items()}

    if list_file is None:
        test_names = list(name2id)
    else:
        with open(list_file, "r") as f:
            test_names = f.read().rstrip().split("\n")

    errors_t = []
    errors_R = []
    for name in test_names:
        if name not in predictions:
            if only_localized:
                continue
            e_t = np.inf
            e_R = 180.0
        else:
            image = images[name2id[name]]
            R_gt, t_gt = image.qvec2rotmat(), image.tvec
            R, t = predictions[name]
            e_t = np.linalg.norm(-R_gt.T @ t_gt + R.T @ t, axis=0)
            cos = np.clip((np.trace(np.dot(R_gt.T, R)) - 1) / 2, -1.0, 1.0)
            e_R = np.rad2deg(np.abs(np.arccos(cos)))
        errors_t.append(e_t)
        errors_R.append(e_R)

    errors_t = np.array(errors_t)
    errors_R = np.array(errors_R)

    med_t = np.median(errors_t)
    med_R = np.median(errors_R)
    out = f"Results for file {results.name}:"
    out += f"\nMedian errors: {med_t:.3f}m, {med_R:.3f}deg"

    out += "\nPercentage of test images localized within:"
    threshs_t = [0.01, 0.02, 0.03, 0.05, 0.25, 0.5, 5.0]
    threshs_R = [1.0, 2.0, 3.0, 5.0, 2.0, 5.0, 10.0]
    for th_t, th_R in zip(threshs_t, threshs_R):
        ratio = np.mean((errors_t < th_t) & (errors_R < th_R))
        out += f"\n\t{th_t*100:.0f}cm, {th_R:.0f}deg : {ratio*100:.2f}%"
    logger.info(out)