File size: 10,141 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import numpy as np
import cv2
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import torch.nn.functional as F
from PIL import Image

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Code taken from https://github.com/PruneTruong/DenseMatching/blob/40c29a6b5c35e86b9509e65ab0cd12553d998e5f/validation/utils_pose_estimation.py
# --- GEOMETRY ---
def estimate_pose(kpts0, kpts1, K0, K1, norm_thresh, conf=0.99999):
    if len(kpts0) < 5:
        return None
    K0inv = np.linalg.inv(K0[:2,:2])
    K1inv = np.linalg.inv(K1[:2,:2])

    kpts0 = (K0inv @ (kpts0-K0[None,:2,2]).T).T 
    kpts1 = (K1inv @ (kpts1-K1[None,:2,2]).T).T

    E, mask = cv2.findEssentialMat(
        kpts0, kpts1, np.eye(3), threshold=norm_thresh, prob=conf, method=cv2.RANSAC
    )

    ret = None
    if E is not None:
        best_num_inliers = 0

        for _E in np.split(E, len(E) / 3):
            n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
            if n > best_num_inliers:
                best_num_inliers = n
                ret = (R, t, mask.ravel() > 0)
    return ret


def rotate_intrinsic(K, n):
    base_rot = np.array([[0, 1, 0], [-1, 0, 0], [0, 0, 1]])
    rot = np.linalg.matrix_power(base_rot, n)
    return rot @ K


def rotate_pose_inplane(i_T_w, rot):
    rotation_matrices = [
        np.array(
            [
                [np.cos(r), -np.sin(r), 0.0, 0.0],
                [np.sin(r), np.cos(r), 0.0, 0.0],
                [0.0, 0.0, 1.0, 0.0],
                [0.0, 0.0, 0.0, 1.0],
            ],
            dtype=np.float32,
        )
        for r in [np.deg2rad(d) for d in (0, 270, 180, 90)]
    ]
    return np.dot(rotation_matrices[rot], i_T_w)


def scale_intrinsics(K, scales):
    scales = np.diag([1.0 / scales[0], 1.0 / scales[1], 1.0])
    return np.dot(scales, K)


def to_homogeneous(points):
    return np.concatenate([points, np.ones_like(points[:, :1])], axis=-1)


def angle_error_mat(R1, R2):
    cos = (np.trace(np.dot(R1.T, R2)) - 1) / 2
    cos = np.clip(cos, -1.0, 1.0)  # numercial errors can make it out of bounds
    return np.rad2deg(np.abs(np.arccos(cos)))


def angle_error_vec(v1, v2):
    n = np.linalg.norm(v1) * np.linalg.norm(v2)
    return np.rad2deg(np.arccos(np.clip(np.dot(v1, v2) / n, -1.0, 1.0)))


def compute_pose_error(T_0to1, R, t):
    R_gt = T_0to1[:3, :3]
    t_gt = T_0to1[:3, 3]
    error_t = angle_error_vec(t.squeeze(), t_gt)
    error_t = np.minimum(error_t, 180 - error_t)  # ambiguity of E estimation
    error_R = angle_error_mat(R, R_gt)
    return error_t, error_R


def pose_auc(errors, thresholds):
    sort_idx = np.argsort(errors)
    errors = np.array(errors.copy())[sort_idx]
    recall = (np.arange(len(errors)) + 1) / len(errors)
    errors = np.r_[0.0, errors]
    recall = np.r_[0.0, recall]
    aucs = []
    for t in thresholds:
        last_index = np.searchsorted(errors, t)
        r = np.r_[recall[:last_index], recall[last_index - 1]]
        e = np.r_[errors[:last_index], t]
        aucs.append(np.trapz(r, x=e) / t)
    return aucs


# From Patch2Pix https://github.com/GrumpyZhou/patch2pix
def get_depth_tuple_transform_ops(resize=None, normalize=True, unscale=False):
    ops = []
    if resize:
        ops.append(TupleResize(resize, mode=InterpolationMode.BILINEAR))
    return TupleCompose(ops)


def get_tuple_transform_ops(resize=None, normalize=True, unscale=False):
    ops = []
    if resize:
        ops.append(TupleResize(resize))
    if normalize:
        ops.append(TupleToTensorScaled())
        # ops.append(
        #     TupleNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        # )  # Imagenet mean/std
    else:
        if unscale:
            ops.append(TupleToTensorUnscaled())
        else:
            ops.append(TupleToTensorScaled())
    return TupleCompose(ops)


class ToTensorScaled(object):
    """Convert a RGB PIL Image to a CHW ordered Tensor, scale the range to [0, 1]"""

    def __call__(self, im):
        if not isinstance(im, torch.Tensor):
            im = np.array(im, dtype=np.float32).transpose((2, 0, 1))
            im /= 255.0
            return torch.from_numpy(im)
        else:
            return im

    def __repr__(self):
        return "ToTensorScaled(./255)"


class TupleToTensorScaled(object):
    def __init__(self):
        self.to_tensor = ToTensorScaled()

    def __call__(self, im_tuple):
        return [self.to_tensor(im) for im in im_tuple]

    def __repr__(self):
        return "TupleToTensorScaled(./255)"


class ToTensorUnscaled(object):
    """Convert a RGB PIL Image to a CHW ordered Tensor"""

    def __call__(self, im):
        return torch.from_numpy(np.array(im, dtype=np.float32).transpose((2, 0, 1)))

    def __repr__(self):
        return "ToTensorUnscaled()"


class TupleToTensorUnscaled(object):
    """Convert a RGB PIL Image to a CHW ordered Tensor"""

    def __init__(self):
        self.to_tensor = ToTensorUnscaled()

    def __call__(self, im_tuple):
        return [self.to_tensor(im) for im in im_tuple]

    def __repr__(self):
        return "TupleToTensorUnscaled()"


class TupleResize(object):
    def __init__(self, size, mode=InterpolationMode.BICUBIC):
        self.size = size
        self.resize = transforms.Resize(size, mode)

    def __call__(self, im_tuple):
        return [self.resize(im) for im in im_tuple]

    def __repr__(self):
        return "TupleResize(size={})".format(self.size)


class TupleNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std
        self.normalize = transforms.Normalize(mean=mean, std=std)

    def __call__(self, im_tuple):
        return [self.normalize(im) for im in im_tuple]

    def __repr__(self):
        return "TupleNormalize(mean={}, std={})".format(self.mean, self.std)


class TupleCompose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, im_tuple):
        for t in self.transforms:
            im_tuple = t(im_tuple)
        return im_tuple

    def __repr__(self):
        format_string = self.__class__.__name__ + "("
        for t in self.transforms:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
        return format_string


@torch.no_grad()
def warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1):
    """Warp kpts0 from I0 to I1 with depth, K and Rt
    Also check covisibility and depth consistency.
    Depth is consistent if relative error < 0.2 (hard-coded).
    # https://github.com/zju3dv/LoFTR/blob/94e98b695be18acb43d5d3250f52226a8e36f839/src/loftr/utils/geometry.py adapted from here
    Args:
        kpts0 (torch.Tensor): [N, L, 2] - <x, y>, should be normalized in (-1,1)
        depth0 (torch.Tensor): [N, H, W],
        depth1 (torch.Tensor): [N, H, W],
        T_0to1 (torch.Tensor): [N, 3, 4],
        K0 (torch.Tensor): [N, 3, 3],
        K1 (torch.Tensor): [N, 3, 3],
    Returns:
        calculable_mask (torch.Tensor): [N, L]
        warped_keypoints0 (torch.Tensor): [N, L, 2] <x0_hat, y1_hat>
    """
    (
        n,
        h,
        w,
    ) = depth0.shape
    kpts0_depth = F.grid_sample(depth0[:, None], kpts0[:, :, None], mode="bilinear")[
        :, 0, :, 0
    ]
    kpts0 = torch.stack(
        (w * (kpts0[..., 0] + 1) / 2, h * (kpts0[..., 1] + 1) / 2), dim=-1
    )  # [-1+1/h, 1-1/h] -> [0.5, h-0.5]
    # Sample depth, get calculable_mask on depth != 0
    nonzero_mask = kpts0_depth != 0

    # Unproject
    kpts0_h = (
        torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1)
        * kpts0_depth[..., None]
    )  # (N, L, 3)
    kpts0_n = K0.inverse() @ kpts0_h.transpose(2, 1)  # (N, 3, L)
    kpts0_cam = kpts0_n

    # Rigid Transform
    w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]]  # (N, 3, L)
    w_kpts0_depth_computed = w_kpts0_cam[:, 2, :]

    # Project
    w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1)  # (N, L, 3)
    w_kpts0 = w_kpts0_h[:, :, :2] / (
        w_kpts0_h[:, :, [2]] + 1e-4
    )  # (N, L, 2), +1e-4 to avoid zero depth

    # Covisible Check
    h, w = depth1.shape[1:3]
    covisible_mask = (
        (w_kpts0[:, :, 0] > 0)
        * (w_kpts0[:, :, 0] < w - 1)
        * (w_kpts0[:, :, 1] > 0)
        * (w_kpts0[:, :, 1] < h - 1)
    )
    w_kpts0 = torch.stack(
        (2 * w_kpts0[..., 0] / w - 1, 2 * w_kpts0[..., 1] / h - 1), dim=-1
    )  # from [0.5,h-0.5] -> [-1+1/h, 1-1/h]
    # w_kpts0[~covisible_mask, :] = -5 # xd

    w_kpts0_depth = F.grid_sample(
        depth1[:, None], w_kpts0[:, :, None], mode="bilinear"
    )[:, 0, :, 0]
    consistent_mask = (
        (w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth
    ).abs() < 0.05
    valid_mask = nonzero_mask * covisible_mask * consistent_mask

    return valid_mask, w_kpts0


imagenet_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
imagenet_std = torch.tensor([0.229, 0.224, 0.225]).to(device)


def numpy_to_pil(x: np.ndarray):
    """
    Args:
        x: Assumed to be of shape (h,w,c)
    """
    if isinstance(x, torch.Tensor):
        x = x.detach().cpu().numpy()
    if x.max() <= 1.01:
        x *= 255
    x = x.astype(np.uint8)
    return Image.fromarray(x)


def tensor_to_pil(x, unnormalize=False):
    if unnormalize:
        x = x * imagenet_std[:, None, None] + imagenet_mean[:, None, None]
    x = x.detach().permute(1, 2, 0).cpu().numpy()
    x = np.clip(x, 0.0, 1.0)
    return numpy_to_pil(x)


def to_cuda(batch):
    for key, value in batch.items():
        if isinstance(value, torch.Tensor):
            batch[key] = value.to(device)
    return batch


def to_cpu(batch):
    for key, value in batch.items():
        if isinstance(value, torch.Tensor):
            batch[key] = value.cpu()
    return batch


def get_pose(calib):
    w, h = np.array(calib["imsize"])[0]
    return np.array(calib["K"]), np.array(calib["R"]), np.array(calib["T"]).T, h, w


def compute_relative_pose(R1, t1, R2, t2):
    rots = R2 @ (R1.T)
    trans = -rots @ t1 + t2
    return rots, trans