File size: 1,736 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch


def extract_patches(
    tensor: torch.Tensor,
    required_corners: torch.Tensor,
    ps: int,
) -> torch.Tensor:
    c, h, w = tensor.shape
    corner = required_corners.long()
    corner[:, 0] = corner[:, 0].clamp(min=0, max=w - 1 - ps)
    corner[:, 1] = corner[:, 1].clamp(min=0, max=h - 1 - ps)
    offset = torch.arange(0, ps)

    kw = {"indexing": "ij"} if torch.__version__ >= "1.10" else {}
    x, y = torch.meshgrid(offset, offset, **kw)
    patches = torch.stack((x, y)).permute(2, 1, 0).unsqueeze(2)
    patches = patches.to(corner) + corner[None, None]
    pts = patches.reshape(-1, 2)
    sampled = tensor.permute(1, 2, 0)[tuple(pts.T)[::-1]]
    sampled = sampled.reshape(ps, ps, -1, c)
    assert sampled.shape[:3] == patches.shape[:3]
    return sampled.permute(2, 3, 0, 1), corner.float()


def batch_extract_patches(tensor: torch.Tensor, kpts: torch.Tensor, ps: int):
    b, c, h, w = tensor.shape
    b, n, _ = kpts.shape
    out = torch.zeros((b, n, c, ps, ps), dtype=tensor.dtype, device=tensor.device)
    corners = torch.zeros((b, n, 2), dtype=tensor.dtype, device=tensor.device)
    for i in range(b):
        out[i], corners[i] = extract_patches(tensor[i], kpts[i] - ps / 2 - 1, ps)
    return out, corners


def draw_image_patches(img, patches, corners):
    b, c, h, w = img.shape
    b, n, c, p, p = patches.shape
    b, n, _ = corners.shape
    for i in range(b):
        for k in range(n):
            y, x = corners[i, k]
            img[i, :, x : x + p, y : y + p] = patches[i, k]


def build_heatmap(img, patches, corners):
    hmap = torch.zeros_like(img)
    draw_image_patches(hmap, patches, corners.long())
    hmap = hmap.squeeze(1)
    return hmap, (hmap > 0.0).float()  # bxhxw