File size: 7,001 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""
Various handy Python and PyTorch utils.

Author: Paul-Edouard Sarlin (skydes)
"""

import os
import random
import time
from collections.abc import Iterable
from contextlib import contextmanager

import numpy as np
import torch


class AverageMetric:
    def __init__(self):
        self._sum = 0
        self._num_examples = 0

    def update(self, tensor):
        assert tensor.dim() == 1
        tensor = tensor[~torch.isnan(tensor)]
        self._sum += tensor.sum().item()
        self._num_examples += len(tensor)

    def compute(self):
        if self._num_examples == 0:
            return np.nan
        else:
            return self._sum / self._num_examples


# same as AverageMetric, but tracks all elements
class FAverageMetric:
    def __init__(self):
        self._sum = 0
        self._num_examples = 0
        self._elements = []

    def update(self, tensor):
        self._elements += tensor.cpu().numpy().tolist()
        assert tensor.dim() == 1
        tensor = tensor[~torch.isnan(tensor)]
        self._sum += tensor.sum().item()
        self._num_examples += len(tensor)

    def compute(self):
        if self._num_examples == 0:
            return np.nan
        else:
            return self._sum / self._num_examples


class MedianMetric:
    def __init__(self):
        self._elements = []

    def update(self, tensor):
        assert tensor.dim() == 1
        self._elements += tensor.cpu().numpy().tolist()

    def compute(self):
        if len(self._elements) == 0:
            return np.nan
        else:
            return np.nanmedian(self._elements)


class PRMetric:
    def __init__(self):
        self.labels = []
        self.predictions = []

    @torch.no_grad()
    def update(self, labels, predictions, mask=None):
        assert labels.shape == predictions.shape
        self.labels += (
            (labels[mask] if mask is not None else labels).cpu().numpy().tolist()
        )
        self.predictions += (
            (predictions[mask] if mask is not None else predictions)
            .cpu()
            .numpy()
            .tolist()
        )

    @torch.no_grad()
    def compute(self):
        return np.array(self.labels), np.array(self.predictions)

    def reset(self):
        self.labels = []
        self.predictions = []


class QuantileMetric:
    def __init__(self, q=0.05):
        self._elements = []
        self.q = q

    def update(self, tensor):
        assert tensor.dim() == 1
        self._elements += tensor.cpu().numpy().tolist()

    def compute(self):
        if len(self._elements) == 0:
            return np.nan
        else:
            return np.nanquantile(self._elements, self.q)


class RecallMetric:
    def __init__(self, ths, elements=[]):
        self._elements = elements
        self.ths = ths

    def update(self, tensor):
        assert tensor.dim() == 1
        self._elements += tensor.cpu().numpy().tolist()

    def compute(self):
        if isinstance(self.ths, Iterable):
            return [self.compute_(th) for th in self.ths]
        else:
            return self.compute_(self.ths[0])

    def compute_(self, th):
        if len(self._elements) == 0:
            return np.nan
        else:
            s = (np.array(self._elements) < th).sum()
            return s / len(self._elements)


def cal_error_auc(errors, thresholds):
    sort_idx = np.argsort(errors)
    errors = np.array(errors.copy())[sort_idx]
    recall = (np.arange(len(errors)) + 1) / len(errors)
    errors = np.r_[0.0, errors]
    recall = np.r_[0.0, recall]
    aucs = []
    for t in thresholds:
        last_index = np.searchsorted(errors, t)
        r = np.r_[recall[:last_index], recall[last_index - 1]]
        e = np.r_[errors[:last_index], t]
        aucs.append(np.round((np.trapz(r, x=e) / t), 4))
    return aucs


class AUCMetric:
    def __init__(self, thresholds, elements=None):
        self._elements = elements
        self.thresholds = thresholds
        if not isinstance(thresholds, list):
            self.thresholds = [thresholds]

    def update(self, tensor):
        assert tensor.dim() == 1
        self._elements += tensor.cpu().numpy().tolist()

    def compute(self):
        if len(self._elements) == 0:
            return np.nan
        else:
            return cal_error_auc(self._elements, self.thresholds)


class Timer(object):
    """A simpler timer context object.
    Usage:
    ```
    > with Timer('mytimer'):
    >   # some computations
    [mytimer] Elapsed: X
    ```
    """

    def __init__(self, name=None):
        self.name = name

    def __enter__(self):
        self.tstart = time.time()
        return self

    def __exit__(self, type, value, traceback):
        self.duration = time.time() - self.tstart
        if self.name is not None:
            print("[%s] Elapsed: %s" % (self.name, self.duration))


def get_class(mod_path, BaseClass):
    """Get the class object which inherits from BaseClass and is defined in
    the module named mod_name, child of base_path.
    """
    import inspect

    mod = __import__(mod_path, fromlist=[""])
    classes = inspect.getmembers(mod, inspect.isclass)
    # Filter classes defined in the module
    classes = [c for c in classes if c[1].__module__ == mod_path]
    # Filter classes inherited from BaseModel
    classes = [c for c in classes if issubclass(c[1], BaseClass)]
    assert len(classes) == 1, classes
    return classes[0][1]


def set_num_threads(nt):
    """Force numpy and other libraries to use a limited number of threads."""
    try:
        import mkl
    except ImportError:
        pass
    else:
        mkl.set_num_threads(nt)
    torch.set_num_threads(1)
    os.environ["IPC_ENABLE"] = "1"
    for o in [
        "OPENBLAS_NUM_THREADS",
        "NUMEXPR_NUM_THREADS",
        "OMP_NUM_THREADS",
        "MKL_NUM_THREADS",
    ]:
        os.environ[o] = str(nt)


def set_seed(seed):
    random.seed(seed)
    torch.manual_seed(seed)
    np.random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)


def get_random_state(with_cuda):
    pth_state = torch.get_rng_state()
    np_state = np.random.get_state()
    py_state = random.getstate()
    if torch.cuda.is_available() and with_cuda:
        cuda_state = torch.cuda.get_rng_state_all()
    else:
        cuda_state = None
    return pth_state, np_state, py_state, cuda_state


def set_random_state(state):
    pth_state, np_state, py_state, cuda_state = state
    torch.set_rng_state(pth_state)
    np.random.set_state(np_state)
    random.setstate(py_state)
    if (
        cuda_state is not None
        and torch.cuda.is_available()
        and len(cuda_state) == torch.cuda.device_count()
    ):
        torch.cuda.set_rng_state_all(cuda_state)


@contextmanager
def fork_rng(seed=None, with_cuda=True):
    state = get_random_state(with_cuda)
    if seed is not None:
        set_seed(seed)
    try:
        yield
    finally:
        set_random_state(state)