File size: 4,190 Bytes
a316a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import torch.nn.functional as F

from lib.exceptions import EmptyTensorError
from lib.utils import interpolate_dense_features, upscale_positions


def process_multiscale(image, model, scales=[.5, 1, 2]):
    b, _, h_init, w_init = image.size()
    device = image.device
    assert(b == 1)

    all_keypoints = torch.zeros([3, 0])
    all_descriptors = torch.zeros([
        model.dense_feature_extraction.num_channels, 0
    ])
    all_scores = torch.zeros(0)

    previous_dense_features = None
    banned = None
    for idx, scale in enumerate(scales):
        current_image = F.interpolate(
            image, scale_factor=scale,
            mode='bilinear', align_corners=True
        )
        _, _, h_level, w_level = current_image.size()

        dense_features = model.dense_feature_extraction(current_image)
        del current_image

        _, _, h, w = dense_features.size()

        # Sum the feature maps.
        if previous_dense_features is not None:
            dense_features += F.interpolate(
                previous_dense_features, size=[h, w],
                mode='bilinear', align_corners=True
            )
            del previous_dense_features

        # Recover detections.
        detections = model.detection(dense_features)
        if banned is not None:
            banned = F.interpolate(banned.float(), size=[h, w]).bool()
            detections = torch.min(detections, ~banned)
            banned = torch.max(
                torch.max(detections, dim=1)[0].unsqueeze(1), banned
            )
        else:
            banned = torch.max(detections, dim=1)[0].unsqueeze(1)
        fmap_pos = torch.nonzero(detections[0].cpu()).t()
        del detections

        # Recover displacements.
        displacements = model.localization(dense_features)[0].cpu()
        displacements_i = displacements[
            0, fmap_pos[0, :], fmap_pos[1, :], fmap_pos[2, :]
        ]
        displacements_j = displacements[
            1, fmap_pos[0, :], fmap_pos[1, :], fmap_pos[2, :]
        ]
        del displacements

        mask = torch.min(
            torch.abs(displacements_i) < 0.5,
            torch.abs(displacements_j) < 0.5
        )
        fmap_pos = fmap_pos[:, mask]
        valid_displacements = torch.stack([
            displacements_i[mask],
            displacements_j[mask]
        ], dim=0)
        del mask, displacements_i, displacements_j

        fmap_keypoints = fmap_pos[1 :, :].float() + valid_displacements
        del valid_displacements

        try:
            raw_descriptors, _, ids = interpolate_dense_features(
                fmap_keypoints.to(device),
                dense_features[0]
            )
        except EmptyTensorError:
            continue
        fmap_pos = fmap_pos.to(device)
        fmap_keypoints = fmap_keypoints.to(device)
        fmap_pos = fmap_pos[:, ids]
        fmap_keypoints = fmap_keypoints[:, ids]
        del ids

        keypoints = upscale_positions(fmap_keypoints, scaling_steps=2)
        del fmap_keypoints

        descriptors = F.normalize(raw_descriptors, dim=0).cpu()
        del raw_descriptors

        keypoints[0, :] *= h_init / h_level
        keypoints[1, :] *= w_init / w_level

        fmap_pos = fmap_pos.cpu()
        keypoints = keypoints.cpu()

        keypoints = torch.cat([
            keypoints,
            torch.ones([1, keypoints.size(1)]) * 1 / scale,
        ], dim=0)

        scores = dense_features[
            0, fmap_pos[0, :], fmap_pos[1, :], fmap_pos[2, :]
        ].cpu() / (idx + 1)
        del fmap_pos

        all_keypoints = torch.cat([all_keypoints, keypoints], dim=1)
        all_descriptors = torch.cat([all_descriptors, descriptors], dim=1)
        all_scores = torch.cat([all_scores, scores], dim=0)
        del keypoints, descriptors

        previous_dense_features = dense_features
        del dense_features
    del previous_dense_features, banned

    keypoints = all_keypoints.t().detach().numpy()
    del all_keypoints
    scores = all_scores.detach().numpy()
    del all_scores
    descriptors = all_descriptors.t().detach().numpy()
    del all_descriptors
    return keypoints, scores, descriptors