File size: 11,145 Bytes
10b4a5f
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
358ab8f
10b4a5f
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
358ab8f
 
 
10b4a5f
358ab8f
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
10b4a5f
358ab8f
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from loguru import logger
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F

from .linear_attention import LinearAttention, FullAttention


class LoFTREncoderLayer(nn.Module):
    def __init__(self, d_model, nhead, attention="linear"):
        super(LoFTREncoderLayer, self).__init__()

        self.dim = d_model // nhead
        self.nhead = nhead

        # multi-head attention
        self.q_proj = nn.Linear(d_model, d_model, bias=False)
        self.k_proj = nn.Linear(d_model, d_model, bias=False)
        self.v_proj = nn.Linear(d_model, d_model, bias=False)
        self.attention = LinearAttention() if attention == "linear" else FullAttention()
        self.merge = nn.Linear(d_model, d_model, bias=False)

        # feed-forward network
        self.mlp = nn.Sequential(
            nn.Linear(d_model * 2, d_model * 2, bias=False),
            nn.GELU(),
            nn.Linear(d_model * 2, d_model, bias=False),
        )

        # norm and dropout
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)

    def forward(self, x, source, x_mask=None, source_mask=None):
        """
        Args:
            x (torch.Tensor): [N, L, C]
            source (torch.Tensor): [N, S, C]
            x_mask (torch.Tensor): [N, L] (optional)
            source_mask (torch.Tensor): [N, S] (optional)
        """
        bs = x.shape[0]
        query, key, value = x, source, source

        # multi-head attention
        query = self.q_proj(query).view(bs, -1, self.nhead, self.dim)  # [N, L, (H, D)]
        key = self.k_proj(key).view(bs, -1, self.nhead, self.dim)  # [N, S, (H, D)]
        value = self.v_proj(value).view(bs, -1, self.nhead, self.dim)
        message = self.attention(
            query, key, value, q_mask=x_mask, kv_mask=source_mask
        )  # [N, L, (H, D)]
        message = self.merge(message.view(bs, -1, self.nhead * self.dim))  # [N, L, C]
        message = self.norm1(message)

        # feed-forward network
        message = self.mlp(torch.cat([x, message], dim=2))
        message = self.norm2(message)

        return x + message


class TopicFormer(nn.Module):
    """A Local Feature Transformer (LoFTR) module."""

    def __init__(self, config):
        super(TopicFormer, self).__init__()

        self.config = config
        self.d_model = config["d_model"]
        self.nhead = config["nhead"]
        self.layer_names = config["layer_names"]
        encoder_layer = LoFTREncoderLayer(
            config["d_model"], config["nhead"], config["attention"]
        )
        self.layers = nn.ModuleList(
            [copy.deepcopy(encoder_layer) for _ in range(len(self.layer_names))]
        )

        self.topic_transformers = (
            nn.ModuleList(
                [
                    copy.deepcopy(encoder_layer)
                    for _ in range(2 * config["n_topic_transformers"])
                ]
            )
            if config["n_samples"] > 0
            else None
        )  # nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(2)])
        self.n_iter_topic_transformer = config["n_topic_transformers"]

        self.seed_tokens = nn.Parameter(
            torch.randn(config["n_topics"], config["d_model"])
        )
        self.register_parameter("seed_tokens", self.seed_tokens)
        self.n_samples = config["n_samples"]

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def sample_topic(self, prob_topics, topics, L):
        """
        Args:
            topics (torch.Tensor): [N, L+S, K]
        """
        prob_topics0, prob_topics1 = prob_topics[:, :L], prob_topics[:, L:]
        topics0, topics1 = topics[:, :L], topics[:, L:]

        theta0 = F.normalize(prob_topics0.sum(dim=1), p=1, dim=-1)  # [N, K]
        theta1 = F.normalize(prob_topics1.sum(dim=1), p=1, dim=-1)
        theta = F.normalize(theta0 * theta1, p=1, dim=-1)
        if self.n_samples == 0:
            return None
        if self.training:
            sampled_inds = torch.multinomial(theta, self.n_samples)
            sampled_values = torch.gather(theta, dim=-1, index=sampled_inds)
        else:
            sampled_values, sampled_inds = torch.topk(theta, self.n_samples, dim=-1)
        sampled_topics0 = torch.gather(
            topics0,
            dim=-1,
            index=sampled_inds.unsqueeze(1).repeat(1, topics0.shape[1], 1),
        )
        sampled_topics1 = torch.gather(
            topics1,
            dim=-1,
            index=sampled_inds.unsqueeze(1).repeat(1, topics1.shape[1], 1),
        )
        return sampled_topics0, sampled_topics1

    def reduce_feat(self, feat, topick, N, C):
        len_topic = topick.sum(dim=-1).int()
        max_len = len_topic.max().item()
        selected_ids = topick.bool()
        resized_feat = torch.zeros(
            (N, max_len, C), dtype=torch.float32, device=feat.device
        )
        new_mask = torch.zeros_like(resized_feat[..., 0]).bool()
        for i in range(N):
            new_mask[i, : len_topic[i]] = True
        resized_feat[new_mask, :] = feat[selected_ids, :]
        return resized_feat, new_mask, selected_ids

    def forward(self, feat0, feat1, mask0=None, mask1=None):
        """
        Args:
            feat0 (torch.Tensor): [N, L, C]
            feat1 (torch.Tensor): [N, S, C]
            mask0 (torch.Tensor): [N, L] (optional)
            mask1 (torch.Tensor): [N, S] (optional)
        """

        assert (
            self.d_model == feat0.shape[2]
        ), "the feature number of src and transformer must be equal"
        N, L, S, C, K = (
            feat0.shape[0],
            feat0.shape[1],
            feat1.shape[1],
            feat0.shape[2],
            self.config["n_topics"],
        )

        seeds = self.seed_tokens.unsqueeze(0).repeat(N, 1, 1)

        feat = torch.cat((feat0, feat1), dim=1)
        if mask0 is not None:
            mask = torch.cat((mask0, mask1), dim=-1)
        else:
            mask = None

        for layer, name in zip(self.layers, self.layer_names):
            if name == "seed":
                # seeds = layer(seeds, feat0, None, mask0)
                # seeds = layer(seeds, feat1, None, mask1)
                seeds = layer(seeds, feat, None, mask)
            elif name == "feat":
                feat0 = layer(feat0, seeds, mask0, None)
                feat1 = layer(feat1, seeds, mask1, None)

        dmatrix = torch.einsum("nmd,nkd->nmk", feat, seeds)
        prob_topics = F.softmax(dmatrix, dim=-1)

        feat_topics = torch.zeros_like(dmatrix).scatter_(
            -1, torch.argmax(dmatrix, dim=-1, keepdim=True), 1.0
        )

        if mask is not None:
            feat_topics = feat_topics * mask.unsqueeze(-1)
            prob_topics = prob_topics * mask.unsqueeze(-1)

        if (feat_topics.detach().sum(dim=1).sum(dim=0) > 100).sum() <= 3:
            logger.warning("topic distribution is highly sparse!")
        sampled_topics = self.sample_topic(prob_topics.detach(), feat_topics, L)
        if sampled_topics is not None:
            updated_feat0, updated_feat1 = torch.zeros_like(feat0), torch.zeros_like(
                feat1
            )
            s_topics0, s_topics1 = sampled_topics
            for k in range(s_topics0.shape[-1]):
                topick0, topick1 = s_topics0[..., k], s_topics1[..., k]  # [N, L+S]
                if (topick0.sum() > 0) and (topick1.sum() > 0):
                    new_feat0, new_mask0, selected_ids0 = self.reduce_feat(
                        feat0, topick0, N, C
                    )
                    new_feat1, new_mask1, selected_ids1 = self.reduce_feat(
                        feat1, topick1, N, C
                    )
                    for idt in range(self.n_iter_topic_transformer):
                        new_feat0 = self.topic_transformers[idt * 2](
                            new_feat0, new_feat0, new_mask0, new_mask0
                        )
                        new_feat1 = self.topic_transformers[idt * 2](
                            new_feat1, new_feat1, new_mask1, new_mask1
                        )
                        new_feat0 = self.topic_transformers[idt * 2 + 1](
                            new_feat0, new_feat1, new_mask0, new_mask1
                        )
                        new_feat1 = self.topic_transformers[idt * 2 + 1](
                            new_feat1, new_feat0, new_mask1, new_mask0
                        )
                    updated_feat0[selected_ids0, :] = new_feat0[new_mask0, :]
                    updated_feat1[selected_ids1, :] = new_feat1[new_mask1, :]

            feat0 = (1 - s_topics0.sum(dim=-1, keepdim=True)) * feat0 + updated_feat0
            feat1 = (1 - s_topics1.sum(dim=-1, keepdim=True)) * feat1 + updated_feat1

        conf_matrix = (
            torch.einsum("nlc,nsc->nls", feat0, feat1) / C**0.5
        )  # (C * temperature)
        if self.training:
            topic_matrix = torch.einsum(
                "nlk,nsk->nls", prob_topics[:, :L], prob_topics[:, L:]
            )
            outlier_mask = torch.einsum(
                "nlk,nsk->nls", feat_topics[:, :L], feat_topics[:, L:]
            )
        else:
            topic_matrix = {"img0": feat_topics[:, :L], "img1": feat_topics[:, L:]}
            outlier_mask = torch.ones_like(conf_matrix)
        if mask0 is not None:
            outlier_mask = outlier_mask * mask0[..., None] * mask1[:, None]  # .bool()
        conf_matrix.masked_fill_(~outlier_mask.bool(), -1e9)
        conf_matrix = F.softmax(conf_matrix, 1) * F.softmax(
            conf_matrix, 2
        )  # * topic_matrix

        return feat0, feat1, conf_matrix, topic_matrix


class LocalFeatureTransformer(nn.Module):
    """A Local Feature Transformer (LoFTR) module."""

    def __init__(self, config):
        super(LocalFeatureTransformer, self).__init__()

        self.config = config
        self.d_model = config["d_model"]
        self.nhead = config["nhead"]
        self.layer_names = config["layer_names"]
        encoder_layer = LoFTREncoderLayer(
            config["d_model"], config["nhead"], config["attention"]
        )
        self.layers = nn.ModuleList(
            [copy.deepcopy(encoder_layer) for _ in range(2)]
        )  # len(self.layer_names))])
        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, feat0, feat1, mask0=None, mask1=None):
        """
        Args:
            feat0 (torch.Tensor): [N, L, C]
            feat1 (torch.Tensor): [N, S, C]
            mask0 (torch.Tensor): [N, L] (optional)
            mask1 (torch.Tensor): [N, S] (optional)
        """

        assert (
            self.d_model == feat0.shape[2]
        ), "the feature number of src and transformer must be equal"

        feat0 = self.layers[0](feat0, feat1, mask0, mask1)
        feat1 = self.layers[1](feat1, feat0, mask1, mask0)

        return feat0, feat1