File size: 3,001 Bytes
c6cae91
 
 
 
 
 
 
 
 
 
 
4c12b36
 
c6cae91
 
4c12b36
 
c6cae91
 
 
4c12b36
 
 
c6cae91
 
 
4c12b36
c6cae91
 
 
 
 
4c12b36
c6cae91
 
4c12b36
c6cae91
 
4c12b36
c6cae91
 
 
 
 
4c12b36
c6cae91
 
4c12b36
 
c6cae91
 
 
4c12b36
 
c6cae91
 
4c12b36
 
c6cae91
 
 
4c12b36
 
 
 
 
c6cae91
4c12b36
 
c6cae91
 
 
 
 
 
 
 
4c12b36
 
 
c6cae91
 
 
4c12b36
c6cae91
 
4c12b36
c6cae91
4c12b36
 
c6cae91
4c12b36
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse

import imagesize

import numpy as np

import os


base_path = "data/megadepth"
# Remove the trailing / if need be.
if base_path[-1] in ["/", "\\"]:
    base_path = base_path[:-1]


base_depth_path = os.path.join(base_path, "phoenix/S6/zl548/MegaDepth_v1")
base_undistorted_sfm_path = os.path.join(base_path, "Undistorted_SfM")

scene_ids = os.listdir(base_undistorted_sfm_path)
for scene_id in scene_ids:
    if os.path.exists(
        f"{base_path}/prep_scene_info/detections/detections_{scene_id}.npy"
    ):
        print(f"skipping {scene_id} as it exists")
        continue
    undistorted_sparse_path = os.path.join(
        base_undistorted_sfm_path, scene_id, "sparse-txt"
    )
    if not os.path.exists(undistorted_sparse_path):
        print("sparse path doesnt exist")
        continue

    depths_path = os.path.join(base_depth_path, scene_id, "dense0", "depths")
    if not os.path.exists(depths_path):
        print("depths doesnt exist")

        continue

    images_path = os.path.join(base_undistorted_sfm_path, scene_id, "images")
    if not os.path.exists(images_path):
        print("images path doesnt exist")
        continue

    # Process cameras.txt
    if not os.path.exists(os.path.join(undistorted_sparse_path, "cameras.txt")):
        print("no cameras")
        continue
    with open(os.path.join(undistorted_sparse_path, "cameras.txt"), "r") as f:
        raw = f.readlines()[3:]  # skip the header

    camera_intrinsics = {}
    for camera in raw:
        camera = camera.split(" ")
        camera_intrinsics[int(camera[0])] = [float(elem) for elem in camera[2:]]

    # Process points3D.txt
    with open(os.path.join(undistorted_sparse_path, "points3D.txt"), "r") as f:
        raw = f.readlines()[3:]  # skip the header

    points3D = {}
    for point3D in raw:
        point3D = point3D.split(" ")
        points3D[int(point3D[0])] = np.array(
            [float(point3D[1]), float(point3D[2]), float(point3D[3])]
        )

    # Process images.txt
    with open(os.path.join(undistorted_sparse_path, "images.txt"), "r") as f:
        raw = f.readlines()[4:]  # skip the header

    image_id_to_idx = {}
    image_names = []
    raw_pose = []
    camera = []
    points3D_id_to_2D = []
    n_points3D = []
    id_to_detections = {}
    for idx, (image, points) in enumerate(zip(raw[::2], raw[1::2])):
        image = image.split(" ")
        points = points.split(" ")

        image_id_to_idx[int(image[0])] = idx

        image_name = image[-1].strip("\n")
        image_names.append(image_name)

        raw_pose.append([float(elem) for elem in image[1:-2]])
        camera.append(int(image[-2]))
        points_np = np.array(points).astype(np.float32).reshape(len(points) // 3, 3)
        visible_points = points_np[points_np[:, 2] != -1]
        id_to_detections[idx] = visible_points
    np.save(
        f"{base_path}/prep_scene_info/detections/detections_{scene_id}.npy",
        id_to_detections,
    )
    print(f"{scene_id} done")