Spaces:
Running
Running
File size: 4,430 Bytes
a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import math
import numpy as np
import cv2
def extract_ORB_keypoints_and_descriptors(img):
# gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
detector = cv2.ORB_create(nfeatures=1000)
kp, desc = detector.detectAndCompute(img, None)
return kp, desc
def match_descriptors_NG(kp1, desc1, kp2, desc2):
bf = cv2.BFMatcher()
try:
matches = bf.knnMatch(desc1, desc2,k=2)
except:
matches = []
good_matches=[]
image1_kp = []
image2_kp = []
ratios = []
try:
for (m1,m2) in matches:
if m1.distance < 0.8 * m2.distance:
good_matches.append(m1)
image2_kp.append(kp2[m1.trainIdx].pt)
image1_kp.append(kp1[m1.queryIdx].pt)
ratios.append(m1.distance / m2.distance)
except:
pass
image1_kp = np.array([image1_kp])
image2_kp = np.array([image2_kp])
ratios = np.array([ratios])
ratios = np.expand_dims(ratios, 2)
return image1_kp, image2_kp, good_matches, ratios
def match_descriptors(kp1, desc1, kp2, desc2, ORB):
if ORB:
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
try:
matches = bf.match(desc1,desc2)
matches = sorted(matches, key = lambda x:x.distance)
except:
matches = []
good_matches=[]
image1_kp = []
image2_kp = []
count = 0
try:
for m in matches:
count+=1
if count < 1000:
good_matches.append(m)
image2_kp.append(kp2[m.trainIdx].pt)
image1_kp.append(kp1[m.queryIdx].pt)
except:
pass
else:
# Match the keypoints with the warped_keypoints with nearest neighbor search
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
try:
matches = bf.match(desc1.transpose(1,0), desc2.transpose(1,0))
matches = sorted(matches, key = lambda x:x.distance)
except:
matches = []
good_matches=[]
image1_kp = []
image2_kp = []
try:
for m in matches:
good_matches.append(m)
image2_kp.append(kp2[m.trainIdx].pt)
image1_kp.append(kp1[m.queryIdx].pt)
except:
pass
image1_kp = np.array([image1_kp])
image2_kp = np.array([image2_kp])
return image1_kp, image2_kp, good_matches
def compute_essential(matched_kp1, matched_kp2, K):
pts1 = cv2.undistortPoints(matched_kp1,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0))
pts2 = cv2.undistortPoints(matched_kp2,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0))
K_1 = np.eye(3)
# Estimate the homography between the matches using RANSAC
ransac_model, ransac_inliers = cv2.findEssentialMat(pts1, pts2, K_1, method=cv2.FM_RANSAC, prob=0.999, threshold=0.001)
if ransac_inliers is None or ransac_model.shape != (3,3):
ransac_inliers = np.array([])
ransac_model = None
return ransac_model, ransac_inliers, pts1, pts2
def compute_error(R_GT,t_GT,E,pts1_norm, pts2_norm, inliers):
"""Compute the angular error between two rotation matrices and two translation vectors.
Keyword arguments:
R -- 2D numpy array containing an estimated rotation
gt_R -- 2D numpy array containing the corresponding ground truth rotation
t -- 2D numpy array containing an estimated translation as column
gt_t -- 2D numpy array containing the corresponding ground truth translation
"""
inliers = inliers.ravel()
R = np.eye(3)
t = np.zeros((3,1))
sst = True
try:
cv2.recoverPose(E, pts1_norm, pts2_norm, np.eye(3), R, t, inliers)
except:
sst = False
# calculate angle between provided rotations
#
if sst:
dR = np.matmul(R, np.transpose(R_GT))
dR = cv2.Rodrigues(dR)[0]
dR = np.linalg.norm(dR) * 180 / math.pi
# calculate angle between provided translations
dT = float(np.dot(t_GT.T, t))
dT /= float(np.linalg.norm(t_GT))
if dT > 1 or dT < -1:
print("Domain warning! dT:",dT)
dT = max(-1,min(1,dT))
dT = math.acos(dT) * 180 / math.pi
dT = np.minimum(dT, 180 - dT) # ambiguity of E estimation
else:
dR,dT = 180.0, 180.0
return dR, dT
|