Spaces:
Running
Running
File size: 6,324 Bytes
a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
def plot_images(imgs, titles=None, cmaps='gray', dpi=100, pad=.5,
adaptive=True):
"""Plot a set of images horizontally.
Args:
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
titles: a list of strings, as titles for each image.
cmaps: colormaps for monochrome images.
adaptive: whether the figure size should fit the image aspect ratios.
"""
n = len(imgs)
if not isinstance(cmaps, (list, tuple)):
cmaps = [cmaps] * n
if adaptive:
ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H
else:
ratios = [4 / 3] * n
figsize = [sum(ratios) * 4.5, 4.5]
fig, ax = plt.subplots(
1, n, figsize=figsize, dpi=dpi, gridspec_kw={'width_ratios': ratios})
if n == 1:
ax = [ax]
for i in range(n):
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
ax[i].get_yaxis().set_ticks([])
ax[i].get_xaxis().set_ticks([])
ax[i].set_axis_off()
for spine in ax[i].spines.values(): # remove frame
spine.set_visible(False)
if titles:
ax[i].set_title(titles[i])
fig.tight_layout(pad=pad)
return ax
def plot_keypoints(kpts, colors='lime', ps=4, alpha=1):
"""Plot keypoints for existing images.
Args:
kpts: list of ndarrays of size (N, 2).
colors: string, or list of list of tuples (one for each keypoints).
ps: size of the keypoints as float.
"""
if not isinstance(colors, list):
colors = [colors] * len(kpts)
axes = plt.gcf().axes
for a, k, c in zip(axes, kpts, colors):
a.scatter(k[:, 0], k[:, 1], c=c, s=ps, alpha=alpha, linewidths=0)
def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, indices=(0, 1), a=1.):
"""Plot matches for a pair of existing images.
Args:
kpts0, kpts1: corresponding keypoints of size (N, 2).
color: color of each match, string or RGB tuple. Random if not given.
lw: width of the lines.
ps: size of the end points (no endpoint if ps=0)
indices: indices of the images to draw the matches on.
a: alpha opacity of the match lines.
"""
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
ax0, ax1 = ax[indices[0]], ax[indices[1]]
fig.canvas.draw()
assert len(kpts0) == len(kpts1)
if color is None:
color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist()
elif len(color) > 0 and not isinstance(color[0], (tuple, list)):
color = [color] * len(kpts0)
if lw > 0:
# transform the points into the figure coordinate system
transFigure = fig.transFigure.inverted()
fkpts0 = transFigure.transform(ax0.transData.transform(kpts0))
fkpts1 = transFigure.transform(ax1.transData.transform(kpts1))
fig.lines += [matplotlib.lines.Line2D(
(fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]),
zorder=1, transform=fig.transFigure, c=color[i], linewidth=lw,
alpha=a)
for i in range(len(kpts0))]
# freeze the axes to prevent the transform to change
ax0.autoscale(enable=False)
ax1.autoscale(enable=False)
if ps > 0:
ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)
def plot_lines(lines, line_colors='orange', point_colors='cyan',
ps=4, lw=2, alpha=1., indices=(0, 1)):
""" Plot lines and endpoints for existing images.
Args:
lines: list of ndarrays of size (N, 2, 2).
colors: string, or list of list of tuples (one for each keypoints).
ps: size of the keypoints as float pixels.
lw: line width as float pixels.
alpha: transparency of the points and lines.
indices: indices of the images to draw the matches on.
"""
if not isinstance(line_colors, list):
line_colors = [line_colors] * len(lines)
if not isinstance(point_colors, list):
point_colors = [point_colors] * len(lines)
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
fig.canvas.draw()
# Plot the lines and junctions
for a, l, lc, pc in zip(axes, lines, line_colors, point_colors):
for i in range(len(l)):
line = matplotlib.lines.Line2D((l[i, 0, 0], l[i, 1, 0]),
(l[i, 0, 1], l[i, 1, 1]),
zorder=1, c=lc, linewidth=lw,
alpha=alpha)
a.add_line(line)
pts = l.reshape(-1, 2)
a.scatter(pts[:, 0], pts[:, 1],
c=pc, s=ps, linewidths=0, zorder=2, alpha=alpha)
def plot_color_line_matches(lines, correct_matches=None,
lw=2, indices=(0, 1)):
"""Plot line matches for existing images with multiple colors.
Args:
lines: list of ndarrays of size (N, 2, 2).
correct_matches: bool array of size (N,) indicating correct matches.
lw: line width as float pixels.
indices: indices of the images to draw the matches on.
"""
n_lines = len(lines[0])
colors = sns.color_palette('husl', n_colors=n_lines)
np.random.shuffle(colors)
alphas = np.ones(n_lines)
# If correct_matches is not None, display wrong matches with a low alpha
if correct_matches is not None:
alphas[~np.array(correct_matches)] = 0.2
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
fig.canvas.draw()
# Plot the lines
for a, l in zip(axes, lines):
# Transform the points into the figure coordinate system
transFigure = fig.transFigure.inverted()
endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
fig.lines += [matplotlib.lines.Line2D(
(endpoint0[i, 0], endpoint1[i, 0]),
(endpoint0[i, 1], endpoint1[i, 1]),
zorder=1, transform=fig.transFigure, c=colors[i],
alpha=alphas[i], linewidth=lw) for i in range(n_lines)]
|