Spaces:
Running
Running
File size: 6,936 Bytes
a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
from typing import Tuple
import numpy as np
import torch
def to_homogeneous(points):
"""Convert N-dimensional points to homogeneous coordinates.
Args:
points: torch.Tensor or numpy.ndarray with size (..., N).
Returns:
A torch.Tensor or numpy.ndarray with size (..., N+1).
"""
if isinstance(points, torch.Tensor):
pad = points.new_ones(points.shape[:-1] + (1,))
return torch.cat([points, pad], dim=-1)
elif isinstance(points, np.ndarray):
pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype)
return np.concatenate([points, pad], axis=-1)
else:
raise ValueError
def from_homogeneous(points, eps=0.):
"""Remove the homogeneous dimension of N-dimensional points.
Args:
points: torch.Tensor or numpy.ndarray with size (..., N+1).
Returns:
A torch.Tensor or numpy ndarray with size (..., N).
"""
return points[..., :-1] / (points[..., -1:] + eps)
def skew_symmetric(v):
"""Create a skew-symmetric matrix from a (batched) vector of size (..., 3).
"""
z = torch.zeros_like(v[..., 0])
M = torch.stack([
z, -v[..., 2], v[..., 1],
v[..., 2], z, -v[..., 0],
-v[..., 1], v[..., 0], z,
], dim=-1).reshape(v.shape[:-1] + (3, 3))
return M
def T_to_E(T):
"""Convert batched poses (..., 4, 4) to batched essential matrices."""
return skew_symmetric(T[..., :3, 3]) @ T[..., :3, :3]
def warp_points_torch(points, H, inverse=True):
"""
Warp a list of points with the INVERSE of the given homography.
The inverse is used to be coherent with tf.contrib.image.transform
Arguments:
points: batched list of N points, shape (B, N, 2).
homography: batched or not (shapes (B, 8) and (8,) respectively).
Returns: a Tensor of shape (B, N, 2) containing the new coordinates of the warped points.
"""
# H = np.expand_dims(homography, axis=0) if len(homography.shape) == 1 else homography
# Get the points to the homogeneous format
points = to_homogeneous(points)
# Apply the homography
out_shape = tuple(list(H.shape[:-1]) + [3, 3])
H_mat = torch.cat([H, torch.ones_like(H[..., :1])], axis=-1).reshape(out_shape)
if inverse:
H_mat = torch.inverse(H_mat)
warped_points = torch.einsum('...nj,...ji->...ni', points, H_mat.transpose(-2, -1))
warped_points = from_homogeneous(warped_points, eps=1e-5)
return warped_points
def seg_equation(segs):
# calculate list of start, end and midpoints points from both lists
start_points, end_points = to_homogeneous(segs[..., 0, :]), to_homogeneous(segs[..., 1, :])
# Compute the line equations as ax + by + c = 0 , where x^2 + y^2 = 1
lines = torch.cross(start_points, end_points, dim=-1)
lines_norm = (torch.sqrt(lines[..., 0] ** 2 + lines[..., 1] ** 2)[..., None])
assert torch.all(lines_norm > 0), 'Error: trying to compute the equation of a line with a single point'
lines = lines / lines_norm
return lines
def is_inside_img(pts: torch.Tensor, img_shape: Tuple[int, int]):
h, w = img_shape
return (pts >= 0).all(dim=-1) & (pts[..., 0] < w) & (pts[..., 1] < h) & (~torch.isinf(pts).any(dim=-1))
def shrink_segs_to_img(segs: torch.Tensor, img_shape: Tuple[int, int]) -> torch.Tensor:
"""
Shrink an array of segments to fit inside the image.
:param segs: The tensor of segments with shape (N, 2, 2)
:param img_shape: The image shape in format (H, W)
"""
EPS = 1e-4
device = segs.device
w, h = img_shape[1], img_shape[0]
# Project the segments to the reference image
segs = segs.clone()
eqs = seg_equation(segs)
x0, y0 = torch.tensor([1., 0, 0.], device=device), torch.tensor([0., 1, 0], device=device)
x0 = x0.repeat(eqs.shape[:-1] + (1,))
y0 = y0.repeat(eqs.shape[:-1] + (1,))
pt_x0s = torch.cross(eqs, x0, dim=-1)
pt_x0s = pt_x0s[..., :-1] / pt_x0s[..., None, -1]
pt_x0s_valid = is_inside_img(pt_x0s, img_shape)
pt_y0s = torch.cross(eqs, y0, dim=-1)
pt_y0s = pt_y0s[..., :-1] / pt_y0s[..., None, -1]
pt_y0s_valid = is_inside_img(pt_y0s, img_shape)
xW, yH = torch.tensor([1., 0, EPS - w], device=device), torch.tensor([0., 1, EPS - h], device=device)
xW = xW.repeat(eqs.shape[:-1] + (1,))
yH = yH.repeat(eqs.shape[:-1] + (1,))
pt_xWs = torch.cross(eqs, xW, dim=-1)
pt_xWs = pt_xWs[..., :-1] / pt_xWs[..., None, -1]
pt_xWs_valid = is_inside_img(pt_xWs, img_shape)
pt_yHs = torch.cross(eqs, yH, dim=-1)
pt_yHs = pt_yHs[..., :-1] / pt_yHs[..., None, -1]
pt_yHs_valid = is_inside_img(pt_yHs, img_shape)
# If the X coordinate of the first endpoint is out
mask = (segs[..., 0, 0] < 0) & pt_x0s_valid
segs[mask, 0, :] = pt_x0s[mask]
mask = (segs[..., 0, 0] > (w - 1)) & pt_xWs_valid
segs[mask, 0, :] = pt_xWs[mask]
# If the X coordinate of the second endpoint is out
mask = (segs[..., 1, 0] < 0) & pt_x0s_valid
segs[mask, 1, :] = pt_x0s[mask]
mask = (segs[:, 1, 0] > (w - 1)) & pt_xWs_valid
segs[mask, 1, :] = pt_xWs[mask]
# If the Y coordinate of the first endpoint is out
mask = (segs[..., 0, 1] < 0) & pt_y0s_valid
segs[mask, 0, :] = pt_y0s[mask]
mask = (segs[..., 0, 1] > (h - 1)) & pt_yHs_valid
segs[mask, 0, :] = pt_yHs[mask]
# If the Y coordinate of the second endpoint is out
mask = (segs[..., 1, 1] < 0) & pt_y0s_valid
segs[mask, 1, :] = pt_y0s[mask]
mask = (segs[..., 1, 1] > (h - 1)) & pt_yHs_valid
segs[mask, 1, :] = pt_yHs[mask]
assert torch.all(segs >= 0) and torch.all(segs[..., 0] < w) and torch.all(segs[..., 1] < h)
return segs
def warp_lines_torch(lines, H, inverse=True, dst_shape: Tuple[int, int] = None) -> Tuple[torch.Tensor, torch.Tensor]:
"""
:param lines: A tensor of shape (B, N, 2, 2) where B is the batch size, N the number of lines.
:param H: The homography used to convert the lines. batched or not (shapes (B, 8) and (8,) respectively).
:param inverse: Whether to apply H or the inverse of H
:param dst_shape:If provided, lines are trimmed to be inside the image
"""
device = lines.device
batch_size, n = lines.shape[:2]
lines = warp_points_torch(lines.reshape(batch_size, -1, 2), H, inverse).reshape(lines.shape)
if dst_shape is None:
return lines, torch.ones(lines.shape[:-2], dtype=torch.bool, device=device)
out_img = torch.any((lines < 0) | (lines >= torch.tensor(dst_shape[::-1], device=device)), -1)
valid = ~out_img.all(-1)
any_out_of_img = out_img.any(-1)
lines_to_trim = valid & any_out_of_img
for b in range(batch_size):
lines_to_trim_mask_b = lines_to_trim[b]
lines_to_trim_b = lines[b][lines_to_trim_mask_b]
corrected_lines = shrink_segs_to_img(lines_to_trim_b, dst_shape)
lines[b][lines_to_trim_mask_b] = corrected_lines
return lines, valid
|