Spaces:
Running
Running
File size: 3,817 Bytes
a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import os
import glob
import pickle
from posixpath import basename
import numpy as np
import h5py
from .base_dumper import BaseDumper
import sys
ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../"))
sys.path.insert(0, ROOT_DIR)
import utils
class scannet(BaseDumper):
def get_seqs(self):
self.pair_list=np.loadtxt('../assets/scannet_eval_list.txt',dtype=str)
self.seq_list=np.unique(np.asarray([path.split('/')[0] for path in self.pair_list[:,0]],dtype=str))
self.dump_seq,self.img_seq=[],[]
for seq in self.seq_list:
dump_dir=os.path.join(self.config['feature_dump_dir'],seq)
cur_img_seq=glob.glob(os.path.join(os.path.join(self.config['rawdata_dir'],seq,'img','*.jpg')))
cur_dump_seq=[os.path.join(dump_dir,path.split('/')[-1])+'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])\
+'.hdf5' for path in cur_img_seq]
self.img_seq+=cur_img_seq
self.dump_seq+=cur_dump_seq
def format_dump_folder(self):
if not os.path.exists(self.config['feature_dump_dir']):
os.mkdir(self.config['feature_dump_dir'])
for seq in self.seq_list:
seq_dir=os.path.join(self.config['feature_dump_dir'],seq)
if not os.path.exists(seq_dir):
os.mkdir(seq_dir)
def format_dump_data(self):
print('Formatting data...')
self.data={'K1':[],'K2':[],'R':[],'T':[],'e':[],'f':[],'fea_path1':[],'fea_path2':[],'img_path1':[],'img_path2':[]}
for pair in self.pair_list:
img_path1,img_path2=pair[0],pair[1]
seq=img_path1.split('/')[0]
index1,index2=int(img_path1.split('/')[-1][:-4]),int(img_path2.split('/')[-1][:-4])
ex1,ex2=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'extrinsic',str(index1)+'.txt'),dtype=float),\
np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'extrinsic',str(index2)+'.txt'),dtype=float)
K1,K2=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'intrinsic',str(index1)+'.txt'),dtype=float),\
np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'intrinsic',str(index2)+'.txt'),dtype=float)
relative_extrinsic=np.matmul(np.linalg.inv(ex2),ex1)
dR,dt=relative_extrinsic[:3,:3],relative_extrinsic[:3,3]
dt /= np.sqrt(np.sum(dt**2))
e_gt_unnorm = np.reshape(np.matmul(
np.reshape(utils.evaluation_utils.np_skew_symmetric(dt.astype('float64').reshape(1, 3)), (3, 3)),
np.reshape(dR.astype('float64'), (3, 3))), (3, 3))
e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm)
f_gt_unnorm=np.linalg.inv(K2.T)@e_gt@np.linalg.inv(K1)
f_gt = f_gt_unnorm / np.linalg.norm(f_gt_unnorm)
self.data['K1'].append(K1),self.data['K2'].append(K2)
self.data['R'].append(dR),self.data['T'].append(dt)
self.data['e'].append(e_gt),self.data['f'].append(f_gt)
dump_seq_dir=os.path.join(self.config['feature_dump_dir'],seq)
fea_path1,fea_path2=os.path.join(dump_seq_dir,img_path1.split('/')[-1]+'_'+self.config['extractor']['name']
+'_'+str(self.config['extractor']['num_kpt'])+'.hdf5'),\
os.path.join(dump_seq_dir,img_path2.split('/')[-1]+'_'+self.config['extractor']['name']
+'_'+str(self.config['extractor']['num_kpt'])+'.hdf5')
self.data['img_path1'].append(img_path1),self.data['img_path2'].append(img_path2)
self.data['fea_path1'].append(fea_path1),self.data['fea_path2'].append(fea_path2)
self.form_standard_dataset()
|