File size: 7,120 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import  numpy as np


def norm_kpt(K, kp):
    kp = np.concatenate([kp, np.ones([kp.shape[0], 1])], axis=1)
    kp = np.matmul(kp, np.linalg.inv(K).T)[:, :2]
    return kp
    
def unnorm_kp(K,kp):
    kp = np.concatenate([kp, np.ones([kp.shape[0], 1])], axis=1)
    kp = np.matmul(kp,K.T)[:, :2]
    return kp

def interpolate_depth(pos, depth):
        # pos:[y,x]
        ids = np.array(range(0, pos.shape[0]))
    
        h, w = depth.shape

        i = pos[:, 0]
        j = pos[:, 1]
        valid_corner=np.logical_and(np.logical_and(i>0,i<h-1),np.logical_and(j>0,j<w-1))
        i,j=i[valid_corner],j[valid_corner]
        ids = ids[valid_corner]

        i_top_left = np.floor(i).astype(np.int32)
        j_top_left = np.floor(j).astype(np.int32)

        i_top_right = np.floor(i).astype(np.int32)
        j_top_right = np.ceil(j).astype(np.int32)

        i_bottom_left = np.ceil(i).astype(np.int32)
        j_bottom_left = np.floor(j).astype(np.int32)

        i_bottom_right = np.ceil(i).astype(np.int32)
        j_bottom_right = np.ceil(j).astype(np.int32)
        
        # Valid depth
        depth_top_left,depth_top_right,depth_down_left,depth_down_right=depth[i_top_left, j_top_left],depth[i_top_right, j_top_right],\
                                                             depth[i_bottom_left, j_bottom_left],depth[i_bottom_right, j_bottom_right]
        
        valid_depth = np.logical_and(
            np.logical_and(
                depth_top_left > 0,
                depth_top_right > 0
            ),
            np.logical_and(
                depth_down_left > 0,
                depth_down_left > 0
            )
        )
        ids=ids[valid_depth]
        depth_top_left,depth_top_right,depth_down_left,depth_down_right=depth_top_left[valid_depth],depth_top_right[valid_depth],\
                                                                        depth_down_left[valid_depth],depth_down_right[valid_depth]

        i,j,i_top_left,j_top_left=i[valid_depth],j[valid_depth],i_top_left[valid_depth],j_top_left[valid_depth]
        
        # Interpolation
        dist_i_top_left = i - i_top_left.astype(np.float32)
        dist_j_top_left = j - j_top_left.astype(np.float32)
        w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left)
        w_top_right = (1 - dist_i_top_left) * dist_j_top_left
        w_bottom_left = dist_i_top_left * (1 - dist_j_top_left)
        w_bottom_right = dist_i_top_left * dist_j_top_left

        interpolated_depth = (
            w_top_left * depth_top_left +
            w_top_right * depth_top_right+
            w_bottom_left * depth_down_left +
            w_bottom_right * depth_down_right
        )
        return [interpolated_depth, ids]


def reprojection(depth_map,kpt,dR,dt,K1_img2depth,K1,K2):
    #warp kpt from img1 to img2
    def swap_axis(data):
        return np.stack([data[:, 1], data[:, 0]], axis=-1)

    kp_depth = unnorm_kp(K1_img2depth,kpt)
    uv_depth = swap_axis(kp_depth)
    z,valid_idx = interpolate_depth(uv_depth, depth_map)

    norm_kp=norm_kpt(K1,kpt)
    norm_kp_valid = np.concatenate([norm_kp[valid_idx, :], np.ones((len(valid_idx), 1))], axis=-1)
    xyz_valid = norm_kp_valid * z.reshape(-1, 1)
    xyz2 = np.matmul(xyz_valid, dR.T) + dt.reshape(1, 3)
    xy2 = xyz2[:, :2] / xyz2[:, 2:]
    kp2, valid = np.ones(kpt.shape) * 1e5, np.zeros(kpt.shape[0])
    kp2[valid_idx] = unnorm_kp(K2,xy2)
    valid[valid_idx] = 1
    return kp2, valid.astype(bool)

def reprojection_2s(kp1, kp2,depth1, depth2, K1, K2, dR, dt, size1,size2):
    #size:H*W
    depth_size1,depth_size2 = [depth1.shape[0], depth1.shape[1]], [depth2.shape[0], depth2.shape[1]]
    scale_1= [float(depth_size1[0]) / size1[0], float(depth_size1[1]) / size1[1], 1]
    scale_2= [float(depth_size2[0]) / size2[0], float(depth_size2[1]) / size2[1], 1]
    K1_img2depth, K2_img2depth = np.diag(np.asarray(scale_1)), np.diag(np.asarray(scale_2))
    kp1_2_proj, valid1_2 = reprojection(depth1, kp1, dR, dt, K1_img2depth,K1,K2)
    kp2_1_proj, valid2_1 = reprojection(depth2, kp2, dR.T, -np.matmul(dR.T, dt), K2_img2depth,K2,K1)
    return [kp1_2_proj,kp2_1_proj],[valid1_2,valid2_1]

def make_corr(kp1,kp2,desc1,desc2,depth1,depth2,K1,K2,dR,dt,size1,size2,corr_th,incorr_th,check_desc=False):
    #make reprojection
    [kp1_2,kp2_1],[valid1_2,valid2_1]=reprojection_2s(kp1,kp2,depth1,depth2,K1,K2,dR,dt,size1,size2)
    num_pts1, num_pts2 = kp1.shape[0], kp2.shape[0]
    #reprojection error
    dis_mat1=np.sqrt(abs((kp1 ** 2).sum(1,keepdims=True) + (kp2_1 ** 2).sum(1,keepdims=False)[np.newaxis] - 2 * np.matmul(kp1, kp2_1.T)))
    dis_mat2 =np.sqrt(abs((kp2 ** 2).sum(1,keepdims=True) + (kp1_2 ** 2).sum(1,keepdims=False)[np.newaxis] - 2 * np.matmul(kp2,kp1_2.T)))
    repro_error = np.maximum(dis_mat1,dis_mat2.T) #n1*n2
    
    # find corr index
    nn_sort1 = np.argmin(repro_error, axis=1)
    nn_sort2 = np.argmin(repro_error, axis=0)
    mask_mutual = nn_sort2[nn_sort1] == np.arange(kp1.shape[0])
    mask_inlier=np.take_along_axis(repro_error,indices=nn_sort1[:,np.newaxis],axis=-1).squeeze(1)<corr_th
    mask = mask_mutual&mask_inlier
    corr_index=np.stack([np.arange(num_pts1)[mask], np.arange(num_pts2)[nn_sort1[mask]]], axis=-1)
    
    if check_desc:
        #filter kpt in same pos using desc distance(e.g. DoG kpt)
        x1_valid, x2_valid = kp1[corr_index[:, 0]], kp2[corr_index[:, 1]]
        mask_samepos1=np.logical_and(x1_valid[:, 0,np.newaxis] == kp1[np.newaxis,:, 0],x1_valid[:, 1,np.newaxis] == kp1[np.newaxis,:, 1])
        mask_samepos2=np.logical_and(x2_valid[:, 0,np.newaxis]== kp2[np.newaxis,:, 0],x2_valid[:, 1,np.newaxis] == kp2[np.newaxis,:, 1])
        duplicated_mask=np.logical_or(mask_samepos1.sum(-1)>1,mask_samepos2.sum(-1)>1)
        duplicated_index=np.nonzero(duplicated_mask)[0]

        unique_corr_index=corr_index[~duplicated_mask]
        clean_duplicated_corr=[]
        for index in duplicated_index:
            cur_desc1, cur_desc2 = desc1[mask_samepos1[index]], desc2[mask_samepos2[index]]
            cur_desc_mat = np.matmul(cur_desc1, cur_desc2.T)
            cur_max_index =[np.argmax(cur_desc_mat)//cur_desc_mat.shape[1],np.argmax(cur_desc_mat)%cur_desc_mat.shape[1]]
            clean_duplicated_corr.append(np.stack([np.arange(num_pts1)[mask_samepos1[index]][cur_max_index[0]],
                        np.arange(num_pts2)[mask_samepos2[index]][cur_max_index[1]]]))
        
        clean_corr_index=unique_corr_index
        if len(clean_duplicated_corr)!=0:
            clean_duplicated_corr=np.stack(clean_duplicated_corr,axis=0)
            clean_corr_index=np.concatenate([clean_corr_index,clean_duplicated_corr],axis=0)
    else:
        clean_corr_index=corr_index
    # find incorr
    mask_incorr1 = np.min(dis_mat2.T[valid1_2], axis=-1) > incorr_th
    mask_incorr2 = np.min(dis_mat1.T[valid2_1], axis=-1) > incorr_th
    incorr_index1, incorr_index2 = np.arange(num_pts1)[valid1_2][mask_incorr1.squeeze()], \
                                    np.arange(num_pts2)[valid2_1][mask_incorr2.squeeze()]

    return clean_corr_index,incorr_index1,incorr_index2