Spaces:
Running
Running
File size: 20,507 Bytes
a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
"""
This file implements the evaluation metrics.
"""
import torch
import torch.nn.functional as F
import numpy as np
from torchvision.ops.boxes import batched_nms
from ..misc.geometry_utils import keypoints_to_grid
class Metrics(object):
""" Metric evaluation calculator. """
def __init__(self, detection_thresh, prob_thresh, grid_size,
junc_metric_lst=None, heatmap_metric_lst=None,
pr_metric_lst=None, desc_metric_lst=None):
# List supported metrics
self.supported_junc_metrics = ["junc_precision", "junc_precision_nms",
"junc_recall", "junc_recall_nms"]
self.supported_heatmap_metrics = ["heatmap_precision",
"heatmap_recall"]
self.supported_pr_metrics = ["junc_pr", "junc_nms_pr"]
self.supported_desc_metrics = ["matching_score"]
# If metric_lst is None, default to use all metrics
if junc_metric_lst is None:
self.junc_metric_lst = self.supported_junc_metrics
else:
self.junc_metric_lst = junc_metric_lst
if heatmap_metric_lst is None:
self.heatmap_metric_lst = self.supported_heatmap_metrics
else:
self.heatmap_metric_lst = heatmap_metric_lst
if pr_metric_lst is None:
self.pr_metric_lst = self.supported_pr_metrics
else:
self.pr_metric_lst = pr_metric_lst
# For the descriptors, the default None assumes no desc metric at all
if desc_metric_lst is None:
self.desc_metric_lst = []
elif desc_metric_lst == 'all':
self.desc_metric_lst = self.supported_desc_metrics
else:
self.desc_metric_lst = desc_metric_lst
if not self._check_metrics():
raise ValueError(
"[Error] Some elements in the metric_lst are invalid.")
# Metric mapping table
self.metric_table = {
"junc_precision": junction_precision(detection_thresh),
"junc_precision_nms": junction_precision(detection_thresh),
"junc_recall": junction_recall(detection_thresh),
"junc_recall_nms": junction_recall(detection_thresh),
"heatmap_precision": heatmap_precision(prob_thresh),
"heatmap_recall": heatmap_recall(prob_thresh),
"junc_pr": junction_pr(),
"junc_nms_pr": junction_pr(),
"matching_score": matching_score(grid_size)
}
# Initialize the results
self.metric_results = {}
for key in self.metric_table.keys():
self.metric_results[key] = 0.
def evaluate(self, junc_pred, junc_pred_nms, junc_gt, heatmap_pred,
heatmap_gt, valid_mask, line_points1=None, line_points2=None,
desc_pred1=None, desc_pred2=None, valid_points=None):
""" Perform evaluation. """
for metric in self.junc_metric_lst:
# If nms metrics then use nms to compute it.
if "nms" in metric:
junc_pred_input = junc_pred_nms
# Use normal inputs instead.
else:
junc_pred_input = junc_pred
self.metric_results[metric] = self.metric_table[metric](
junc_pred_input, junc_gt, valid_mask)
for metric in self.heatmap_metric_lst:
self.metric_results[metric] = self.metric_table[metric](
heatmap_pred, heatmap_gt, valid_mask)
for metric in self.pr_metric_lst:
if "nms" in metric:
self.metric_results[metric] = self.metric_table[metric](
junc_pred_nms, junc_gt, valid_mask)
else:
self.metric_results[metric] = self.metric_table[metric](
junc_pred, junc_gt, valid_mask)
for metric in self.desc_metric_lst:
self.metric_results[metric] = self.metric_table[metric](
line_points1, line_points2, desc_pred1,
desc_pred2, valid_points)
def _check_metrics(self):
""" Check if all input metrics are valid. """
flag = True
for metric in self.junc_metric_lst:
if not metric in self.supported_junc_metrics:
flag = False
break
for metric in self.heatmap_metric_lst:
if not metric in self.supported_heatmap_metrics:
flag = False
break
for metric in self.desc_metric_lst:
if not metric in self.supported_desc_metrics:
flag = False
break
return flag
class AverageMeter(object):
def __init__(self, junc_metric_lst=None, heatmap_metric_lst=None,
is_training=True, desc_metric_lst=None):
# List supported metrics
self.supported_junc_metrics = ["junc_precision", "junc_precision_nms",
"junc_recall", "junc_recall_nms"]
self.supported_heatmap_metrics = ["heatmap_precision",
"heatmap_recall"]
self.supported_pr_metrics = ["junc_pr", "junc_nms_pr"]
self.supported_desc_metrics = ["matching_score"]
# Record loss in training mode
# if is_training:
self.supported_loss = [
"junc_loss", "heatmap_loss", "descriptor_loss", "total_loss"]
self.is_training = is_training
# If metric_lst is None, default to use all metrics
if junc_metric_lst is None:
self.junc_metric_lst = self.supported_junc_metrics
else:
self.junc_metric_lst = junc_metric_lst
if heatmap_metric_lst is None:
self.heatmap_metric_lst = self.supported_heatmap_metrics
else:
self.heatmap_metric_lst = heatmap_metric_lst
# For the descriptors, the default None assumes no desc metric at all
if desc_metric_lst is None:
self.desc_metric_lst = []
elif desc_metric_lst == 'all':
self.desc_metric_lst = self.supported_desc_metrics
else:
self.desc_metric_lst = desc_metric_lst
if not self._check_metrics():
raise ValueError(
"[Error] Some elements in the metric_lst are invalid.")
# Initialize the results
self.metric_results = {}
for key in (self.supported_junc_metrics
+ self.supported_heatmap_metrics
+ self.supported_loss + self.supported_desc_metrics):
self.metric_results[key] = 0.
for key in self.supported_pr_metrics:
zero_lst = [0 for _ in range(50)]
self.metric_results[key] = {
"tp": zero_lst,
"tn": zero_lst,
"fp": zero_lst,
"fn": zero_lst,
"precision": zero_lst,
"recall": zero_lst
}
# Initialize total count
self.count = 0
def update(self, metrics, loss_dict=None, num_samples=1):
# loss should be given in the training mode
if self.is_training and (loss_dict is None):
raise ValueError(
"[Error] loss info should be given in the training mode.")
# update total counts
self.count += num_samples
# update all the metrics
for met in (self.supported_junc_metrics
+ self.supported_heatmap_metrics
+ self.supported_desc_metrics):
self.metric_results[met] += (num_samples
* metrics.metric_results[met])
# Update all the losses
for loss in loss_dict.keys():
self.metric_results[loss] += num_samples * loss_dict[loss]
# Update all pr counts
for pr_met in self.supported_pr_metrics:
# Update all tp, tn, fp, fn, precision, and recall.
for key in metrics.metric_results[pr_met].keys():
# Update each interval
for idx in range(len(self.metric_results[pr_met][key])):
self.metric_results[pr_met][key][idx] += (
num_samples
* metrics.metric_results[pr_met][key][idx])
def average(self):
results = {}
for met in self.metric_results.keys():
# Skip pr curve metrics
if not met in self.supported_pr_metrics:
results[met] = self.metric_results[met] / self.count
# Only update precision and recall in pr metrics
else:
met_results = {
"tp": self.metric_results[met]["tp"],
"tn": self.metric_results[met]["tn"],
"fp": self.metric_results[met]["fp"],
"fn": self.metric_results[met]["fn"],
"precision": [],
"recall": []
}
for idx in range(len(self.metric_results[met]["precision"])):
met_results["precision"].append(
self.metric_results[met]["precision"][idx]
/ self.count)
met_results["recall"].append(
self.metric_results[met]["recall"][idx] / self.count)
results[met] = met_results
return results
def _check_metrics(self):
""" Check if all input metrics are valid. """
flag = True
for metric in self.junc_metric_lst:
if not metric in self.supported_junc_metrics:
flag = False
break
for metric in self.heatmap_metric_lst:
if not metric in self.supported_heatmap_metrics:
flag = False
break
for metric in self.desc_metric_lst:
if not metric in self.supported_desc_metrics:
flag = False
break
return flag
class junction_precision(object):
""" Junction precision. """
def __init__(self, detection_thresh):
self.detection_thresh = detection_thresh
# Compute the evaluation result
def __call__(self, junc_pred, junc_gt, valid_mask):
# Convert prediction to discrete detection
junc_pred = (junc_pred >= self.detection_thresh).astype(np.int)
junc_pred = junc_pred * valid_mask.squeeze()
# Deal with the corner case of the prediction
if np.sum(junc_pred) > 0:
precision = (np.sum(junc_pred * junc_gt.squeeze())
/ np.sum(junc_pred))
else:
precision = 0
return float(precision)
class junction_recall(object):
""" Junction recall. """
def __init__(self, detection_thresh):
self.detection_thresh = detection_thresh
# Compute the evaluation result
def __call__(self, junc_pred, junc_gt, valid_mask):
# Convert prediction to discrete detection
junc_pred = (junc_pred >= self.detection_thresh).astype(np.int)
junc_pred = junc_pred * valid_mask.squeeze()
# Deal with the corner case of the recall.
if np.sum(junc_gt):
recall = np.sum(junc_pred * junc_gt.squeeze()) / np.sum(junc_gt)
else:
recall = 0
return float(recall)
class junction_pr(object):
""" Junction precision-recall info. """
def __init__(self, num_threshold=50):
self.max = 0.4
step = self.max / num_threshold
self.min = step
self.intervals = np.flip(np.arange(self.min, self.max + step, step))
def __call__(self, junc_pred_raw, junc_gt, valid_mask):
tp_lst = []
fp_lst = []
tn_lst = []
fn_lst = []
precision_lst = []
recall_lst = []
valid_mask = valid_mask.squeeze()
# Iterate through all the thresholds
for thresh in list(self.intervals):
# Convert prediction to discrete detection
junc_pred = (junc_pred_raw >= thresh).astype(np.int)
junc_pred = junc_pred * valid_mask
# Compute tp, fp, tn, fn
junc_gt = junc_gt.squeeze()
tp = np.sum(junc_pred * junc_gt)
tn = np.sum((junc_pred == 0).astype(np.float)
* (junc_gt == 0).astype(np.float) * valid_mask)
fp = np.sum((junc_pred == 1).astype(np.float)
* (junc_gt == 0).astype(np.float) * valid_mask)
fn = np.sum((junc_pred == 0).astype(np.float)
* (junc_gt == 1).astype(np.float) * valid_mask)
tp_lst.append(tp)
tn_lst.append(tn)
fp_lst.append(fp)
fn_lst.append(fn)
precision_lst.append(tp / (tp + fp))
recall_lst.append(tp / (tp + fn))
return {
"tp": np.array(tp_lst),
"tn": np.array(tn_lst),
"fp": np.array(fp_lst),
"fn": np.array(fn_lst),
"precision": np.array(precision_lst),
"recall": np.array(recall_lst)
}
class heatmap_precision(object):
""" Heatmap precision. """
def __init__(self, prob_thresh):
self.prob_thresh = prob_thresh
def __call__(self, heatmap_pred, heatmap_gt, valid_mask):
# Assume NHWC (Handle L1 and L2 cases) NxHxWx1
heatmap_pred = np.squeeze(heatmap_pred > self.prob_thresh)
heatmap_pred = heatmap_pred * valid_mask.squeeze()
# Deal with the corner case of the prediction
if np.sum(heatmap_pred) > 0:
precision = (np.sum(heatmap_pred * heatmap_gt.squeeze())
/ np.sum(heatmap_pred))
else:
precision = 0.
return precision
class heatmap_recall(object):
""" Heatmap recall. """
def __init__(self, prob_thresh):
self.prob_thresh = prob_thresh
def __call__(self, heatmap_pred, heatmap_gt, valid_mask):
# Assume NHWC (Handle L1 and L2 cases) NxHxWx1
heatmap_pred = np.squeeze(heatmap_pred > self.prob_thresh)
heatmap_pred = heatmap_pred * valid_mask.squeeze()
# Deal with the corner case of the ground truth
if np.sum(heatmap_gt) > 0:
recall = (np.sum(heatmap_pred * heatmap_gt.squeeze())
/ np.sum(heatmap_gt))
else:
recall = 0.
return recall
class matching_score(object):
""" Descriptors matching score. """
def __init__(self, grid_size):
self.grid_size = grid_size
def __call__(self, points1, points2, desc_pred1,
desc_pred2, line_indices):
b_size, _, Hc, Wc = desc_pred1.size()
img_size = (Hc * self.grid_size, Wc * self.grid_size)
device = desc_pred1.device
# Extract valid keypoints
n_points = line_indices.size()[1]
valid_points = line_indices.bool().flatten()
n_correct_points = torch.sum(valid_points).item()
if n_correct_points == 0:
return torch.tensor(0., dtype=torch.float, device=device)
# Convert the keypoints to a grid suitable for interpolation
grid1 = keypoints_to_grid(points1, img_size)
grid2 = keypoints_to_grid(points2, img_size)
# Extract the descriptors
desc1 = F.grid_sample(desc_pred1, grid1).permute(
0, 2, 3, 1).reshape(b_size * n_points, -1)[valid_points]
desc1 = F.normalize(desc1, dim=1)
desc2 = F.grid_sample(desc_pred2, grid2).permute(
0, 2, 3, 1).reshape(b_size * n_points, -1)[valid_points]
desc2 = F.normalize(desc2, dim=1)
desc_dists = 2 - 2 * (desc1 @ desc2.t())
# Compute percentage of correct matches
matches0 = torch.min(desc_dists, dim=1)[1]
matches1 = torch.min(desc_dists, dim=0)[1]
matching_score = (matches1[matches0]
== torch.arange(len(matches0)).to(device))
matching_score = matching_score.float().mean()
return matching_score
def super_nms(prob_predictions, dist_thresh, prob_thresh=0.01, top_k=0):
""" Non-maximum suppression adapted from SuperPoint. """
# Iterate through batch dimension
im_h = prob_predictions.shape[1]
im_w = prob_predictions.shape[2]
output_lst = []
for i in range(prob_predictions.shape[0]):
# print(i)
prob_pred = prob_predictions[i, ...]
# Filter the points using prob_thresh
coord = np.where(prob_pred >= prob_thresh) # HW format
points = np.concatenate((coord[0][..., None], coord[1][..., None]),
axis=1) # HW format
# Get the probability score
prob_score = prob_pred[points[:, 0], points[:, 1]]
# Perform super nms
# Modify the in_points to xy format (instead of HW format)
in_points = np.concatenate((coord[1][..., None], coord[0][..., None],
prob_score), axis=1).T
keep_points_, keep_inds = nms_fast(in_points, im_h, im_w, dist_thresh)
# Remember to flip outputs back to HW format
keep_points = np.round(np.flip(keep_points_[:2, :], axis=0).T)
keep_score = keep_points_[-1, :].T
# Whether we only keep the topk value
if (top_k > 0) or (top_k is None):
k = min([keep_points.shape[0], top_k])
keep_points = keep_points[:k, :]
keep_score = keep_score[:k]
# Re-compose the probability map
output_map = np.zeros([im_h, im_w])
output_map[keep_points[:, 0].astype(np.int),
keep_points[:, 1].astype(np.int)] = keep_score.squeeze()
output_lst.append(output_map[None, ...])
return np.concatenate(output_lst, axis=0)
def nms_fast(in_corners, H, W, dist_thresh):
"""
Run a faster approximate Non-Max-Suppression on numpy corners shaped:
3xN [x_i,y_i,conf_i]^T
Algo summary: Create a grid sized HxW. Assign each corner location a 1,
rest are zeros. Iterate through all the 1's and convert them to -1 or 0.
Suppress points by setting nearby values to 0.
Grid Value Legend:
-1 : Kept.
0 : Empty or suppressed.
1 : To be processed (converted to either kept or supressed).
NOTE: The NMS first rounds points to integers, so NMS distance might not
be exactly dist_thresh. It also assumes points are within image boundary.
Inputs
in_corners - 3xN numpy array with corners [x_i, y_i, confidence_i]^T.
H - Image height.
W - Image width.
dist_thresh - Distance to suppress, measured as an infinite distance.
Returns
nmsed_corners - 3xN numpy matrix with surviving corners.
nmsed_inds - N length numpy vector with surviving corner indices.
"""
grid = np.zeros((H, W)).astype(int) # Track NMS data.
inds = np.zeros((H, W)).astype(int) # Store indices of points.
# Sort by confidence and round to nearest int.
inds1 = np.argsort(-in_corners[2, :])
corners = in_corners[:, inds1]
rcorners = corners[:2, :].round().astype(int) # Rounded corners.
# Check for edge case of 0 or 1 corners.
if rcorners.shape[1] == 0:
return np.zeros((3, 0)).astype(int), np.zeros(0).astype(int)
if rcorners.shape[1] == 1:
out = np.vstack((rcorners, in_corners[2])).reshape(3, 1)
return out, np.zeros((1)).astype(int)
# Initialize the grid.
for i, rc in enumerate(rcorners.T):
grid[rcorners[1, i], rcorners[0, i]] = 1
inds[rcorners[1, i], rcorners[0, i]] = i
# Pad the border of the grid, so that we can NMS points near the border.
pad = dist_thresh
grid = np.pad(grid, ((pad, pad), (pad, pad)), mode='constant')
# Iterate through points, highest to lowest conf, suppress neighborhood.
count = 0
for i, rc in enumerate(rcorners.T):
# Account for top and left padding.
pt = (rc[0] + pad, rc[1] + pad)
if grid[pt[1], pt[0]] == 1: # If not yet suppressed.
grid[pt[1] - pad:pt[1] + pad + 1, pt[0] - pad:pt[0] + pad + 1] = 0
grid[pt[1], pt[0]] = -1
count += 1
# Get all surviving -1's and return sorted array of remaining corners.
keepy, keepx = np.where(grid == -1)
keepy, keepx = keepy - pad, keepx - pad
inds_keep = inds[keepy, keepx]
out = corners[:, inds_keep]
values = out[-1, :]
inds2 = np.argsort(-values)
out = out[:, inds2]
out_inds = inds1[inds_keep[inds2]]
return out, out_inds
|