File size: 20,507 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
"""
This file implements the evaluation metrics.
"""
import torch
import torch.nn.functional as F
import numpy as np
from torchvision.ops.boxes import batched_nms

from ..misc.geometry_utils import keypoints_to_grid


class Metrics(object):
    """ Metric evaluation calculator. """
    def __init__(self, detection_thresh, prob_thresh, grid_size,
                 junc_metric_lst=None, heatmap_metric_lst=None,
                 pr_metric_lst=None, desc_metric_lst=None):
        # List supported metrics
        self.supported_junc_metrics = ["junc_precision", "junc_precision_nms",
                                       "junc_recall", "junc_recall_nms"]
        self.supported_heatmap_metrics = ["heatmap_precision",
                                          "heatmap_recall"]
        self.supported_pr_metrics = ["junc_pr", "junc_nms_pr"]
        self.supported_desc_metrics = ["matching_score"]

        # If metric_lst is None, default to use all metrics
        if junc_metric_lst is None:
            self.junc_metric_lst = self.supported_junc_metrics
        else:
            self.junc_metric_lst = junc_metric_lst
        if heatmap_metric_lst is None:
            self.heatmap_metric_lst = self.supported_heatmap_metrics
        else:
            self.heatmap_metric_lst = heatmap_metric_lst
        if pr_metric_lst is None:
            self.pr_metric_lst = self.supported_pr_metrics
        else:
            self.pr_metric_lst = pr_metric_lst
        # For the descriptors, the default None assumes no desc metric at all
        if desc_metric_lst is None:
            self.desc_metric_lst = []
        elif desc_metric_lst == 'all':
            self.desc_metric_lst = self.supported_desc_metrics
        else:
            self.desc_metric_lst = desc_metric_lst

        if not self._check_metrics():
            raise ValueError(
                "[Error] Some elements in the metric_lst are invalid.")

        # Metric mapping table
        self.metric_table = {
            "junc_precision": junction_precision(detection_thresh),
            "junc_precision_nms": junction_precision(detection_thresh),
            "junc_recall": junction_recall(detection_thresh),
            "junc_recall_nms": junction_recall(detection_thresh),
            "heatmap_precision": heatmap_precision(prob_thresh),
            "heatmap_recall": heatmap_recall(prob_thresh),
            "junc_pr": junction_pr(),
            "junc_nms_pr": junction_pr(),
            "matching_score": matching_score(grid_size)
        }

        # Initialize the results
        self.metric_results = {}
        for key in self.metric_table.keys():
            self.metric_results[key] = 0.

    def evaluate(self, junc_pred, junc_pred_nms, junc_gt, heatmap_pred,
                 heatmap_gt, valid_mask, line_points1=None, line_points2=None,
                 desc_pred1=None, desc_pred2=None, valid_points=None):
        """ Perform evaluation. """
        for metric in self.junc_metric_lst:
            # If nms metrics then use nms to compute it.
            if "nms" in metric:
                junc_pred_input = junc_pred_nms
            # Use normal inputs instead.
            else:
                junc_pred_input = junc_pred
            self.metric_results[metric] = self.metric_table[metric](
                junc_pred_input, junc_gt, valid_mask)

        for metric in self.heatmap_metric_lst:
            self.metric_results[metric] = self.metric_table[metric](
                heatmap_pred, heatmap_gt, valid_mask)

        for metric in self.pr_metric_lst:
            if "nms" in metric:
                self.metric_results[metric] = self.metric_table[metric](
                    junc_pred_nms, junc_gt, valid_mask)
            else:
                self.metric_results[metric] = self.metric_table[metric](
                    junc_pred, junc_gt, valid_mask)

        for metric in self.desc_metric_lst:
            self.metric_results[metric] = self.metric_table[metric](
                line_points1, line_points2, desc_pred1,
                desc_pred2, valid_points)

    def _check_metrics(self):
        """ Check if all input metrics are valid. """
        flag = True
        for metric in self.junc_metric_lst:
            if not metric in self.supported_junc_metrics:
                flag = False
                break
        for metric in self.heatmap_metric_lst:
            if not metric in self.supported_heatmap_metrics:
                flag = False
                break
        for metric in self.desc_metric_lst:
            if not metric in self.supported_desc_metrics:
                flag = False
                break

        return flag


class AverageMeter(object):
    def __init__(self, junc_metric_lst=None, heatmap_metric_lst=None,
                 is_training=True, desc_metric_lst=None):
        # List supported metrics
        self.supported_junc_metrics = ["junc_precision", "junc_precision_nms",
                                       "junc_recall", "junc_recall_nms"]
        self.supported_heatmap_metrics = ["heatmap_precision",
                                          "heatmap_recall"]
        self.supported_pr_metrics = ["junc_pr", "junc_nms_pr"]
        self.supported_desc_metrics = ["matching_score"]
        # Record loss in training mode
        # if is_training:
        self.supported_loss = [
            "junc_loss", "heatmap_loss", "descriptor_loss", "total_loss"]

        self.is_training = is_training

        # If metric_lst is None, default to use all metrics
        if junc_metric_lst is None:
            self.junc_metric_lst = self.supported_junc_metrics
        else:
            self.junc_metric_lst = junc_metric_lst
        if heatmap_metric_lst is None:
            self.heatmap_metric_lst = self.supported_heatmap_metrics
        else:
            self.heatmap_metric_lst = heatmap_metric_lst
        # For the descriptors, the default None assumes no desc metric at all
        if desc_metric_lst is None:
            self.desc_metric_lst = []
        elif desc_metric_lst == 'all':
            self.desc_metric_lst = self.supported_desc_metrics
        else:
            self.desc_metric_lst = desc_metric_lst

        if not self._check_metrics():
            raise ValueError(
                "[Error] Some elements in the metric_lst are invalid.")

        # Initialize the results
        self.metric_results = {}
        for key in (self.supported_junc_metrics
                    + self.supported_heatmap_metrics
                    + self.supported_loss + self.supported_desc_metrics):
            self.metric_results[key] = 0.
        for key in self.supported_pr_metrics:
            zero_lst = [0 for _ in range(50)]
            self.metric_results[key] = {
                "tp": zero_lst,
                "tn": zero_lst,
                "fp": zero_lst,
                "fn": zero_lst,
                "precision": zero_lst,
                "recall": zero_lst
            }

        # Initialize total count
        self.count = 0

    def update(self, metrics, loss_dict=None, num_samples=1):
        # loss should be given in the training mode
        if self.is_training and (loss_dict is None):
            raise ValueError(
                "[Error] loss info should be given in the training mode.")

        # update total counts
        self.count += num_samples

        # update all the metrics
        for met in (self.supported_junc_metrics
                    + self.supported_heatmap_metrics
                    + self.supported_desc_metrics):
            self.metric_results[met] += (num_samples
                                         * metrics.metric_results[met])

        # Update all the losses
        for loss in loss_dict.keys():
            self.metric_results[loss] += num_samples * loss_dict[loss]

        # Update all pr counts
        for pr_met in self.supported_pr_metrics:
            # Update all tp, tn, fp, fn, precision, and recall.
            for key in metrics.metric_results[pr_met].keys():
                # Update each interval
                for idx in range(len(self.metric_results[pr_met][key])):
                    self.metric_results[pr_met][key][idx] += (
                        num_samples
                        * metrics.metric_results[pr_met][key][idx])

    def average(self):
        results = {}
        for met in self.metric_results.keys():
            # Skip pr curve metrics
            if not met in self.supported_pr_metrics:
                results[met] = self.metric_results[met] / self.count
            # Only update precision and recall in pr metrics
            else:
                met_results = {
                    "tp": self.metric_results[met]["tp"],
                    "tn": self.metric_results[met]["tn"],
                    "fp": self.metric_results[met]["fp"],
                    "fn": self.metric_results[met]["fn"],
                    "precision": [],
                    "recall": []
                }
                for idx in range(len(self.metric_results[met]["precision"])):
                    met_results["precision"].append(
                        self.metric_results[met]["precision"][idx]
                        / self.count)
                    met_results["recall"].append(
                        self.metric_results[met]["recall"][idx] / self.count)

                results[met] = met_results

        return results

    def _check_metrics(self):
        """ Check if all input metrics are valid. """
        flag = True
        for metric in self.junc_metric_lst:
            if not metric in self.supported_junc_metrics:
                flag = False
                break
        for metric in self.heatmap_metric_lst:
            if not metric in self.supported_heatmap_metrics:
                flag = False
                break
        for metric in self.desc_metric_lst:
            if not metric in self.supported_desc_metrics:
                flag = False
                break

        return flag


class junction_precision(object):
    """ Junction precision. """
    def __init__(self, detection_thresh):
        self.detection_thresh = detection_thresh

    # Compute the evaluation result
    def __call__(self, junc_pred, junc_gt, valid_mask):
        # Convert prediction to discrete detection
        junc_pred = (junc_pred >= self.detection_thresh).astype(np.int)
        junc_pred = junc_pred * valid_mask.squeeze()

        # Deal with the corner case of the prediction
        if np.sum(junc_pred) > 0:
            precision = (np.sum(junc_pred * junc_gt.squeeze())
                         / np.sum(junc_pred))
        else:
            precision = 0

        return float(precision)


class junction_recall(object):
    """ Junction recall. """
    def __init__(self, detection_thresh):
        self.detection_thresh = detection_thresh

    # Compute the evaluation result
    def __call__(self, junc_pred, junc_gt, valid_mask):
        # Convert prediction to discrete detection
        junc_pred = (junc_pred >= self.detection_thresh).astype(np.int)
        junc_pred = junc_pred * valid_mask.squeeze()

        # Deal with the corner case of the recall.
        if np.sum(junc_gt):
            recall = np.sum(junc_pred * junc_gt.squeeze()) / np.sum(junc_gt)
        else:
            recall = 0

        return float(recall)


class junction_pr(object):
    """ Junction precision-recall info. """
    def __init__(self, num_threshold=50):
        self.max = 0.4
        step = self.max / num_threshold
        self.min = step
        self.intervals = np.flip(np.arange(self.min, self.max + step, step))

    def __call__(self, junc_pred_raw, junc_gt, valid_mask):
        tp_lst = []
        fp_lst = []
        tn_lst = []
        fn_lst = []
        precision_lst = []
        recall_lst = []

        valid_mask = valid_mask.squeeze()
        # Iterate through all the thresholds
        for thresh in list(self.intervals):
            # Convert prediction to discrete detection
            junc_pred = (junc_pred_raw >= thresh).astype(np.int)
            junc_pred = junc_pred * valid_mask

            # Compute tp, fp, tn, fn
            junc_gt = junc_gt.squeeze()
            tp = np.sum(junc_pred * junc_gt)
            tn = np.sum((junc_pred == 0).astype(np.float)
                        * (junc_gt == 0).astype(np.float) * valid_mask)
            fp = np.sum((junc_pred == 1).astype(np.float)
                        * (junc_gt == 0).astype(np.float) * valid_mask)
            fn = np.sum((junc_pred == 0).astype(np.float)
                        * (junc_gt == 1).astype(np.float) * valid_mask)

            tp_lst.append(tp)
            tn_lst.append(tn)
            fp_lst.append(fp)
            fn_lst.append(fn)
            precision_lst.append(tp / (tp + fp))
            recall_lst.append(tp / (tp + fn))

        return {
            "tp": np.array(tp_lst),
            "tn": np.array(tn_lst),
            "fp": np.array(fp_lst),
            "fn": np.array(fn_lst),
            "precision": np.array(precision_lst),
            "recall": np.array(recall_lst)
        }


class heatmap_precision(object):
    """ Heatmap precision. """
    def __init__(self, prob_thresh):
        self.prob_thresh = prob_thresh

    def __call__(self, heatmap_pred, heatmap_gt, valid_mask):
        # Assume NHWC (Handle L1 and L2 cases) NxHxWx1
        heatmap_pred = np.squeeze(heatmap_pred > self.prob_thresh)
        heatmap_pred = heatmap_pred * valid_mask.squeeze()

        # Deal with the corner case of the prediction
        if np.sum(heatmap_pred) > 0:
            precision = (np.sum(heatmap_pred * heatmap_gt.squeeze())
                         / np.sum(heatmap_pred))
        else:
            precision = 0.

        return precision


class heatmap_recall(object):
    """ Heatmap recall. """
    def __init__(self, prob_thresh):
        self.prob_thresh = prob_thresh

    def __call__(self, heatmap_pred, heatmap_gt, valid_mask):
        # Assume NHWC (Handle L1 and L2 cases) NxHxWx1
        heatmap_pred = np.squeeze(heatmap_pred > self.prob_thresh)
        heatmap_pred = heatmap_pred * valid_mask.squeeze()

        # Deal with the corner case of the ground truth
        if np.sum(heatmap_gt) > 0:
            recall = (np.sum(heatmap_pred * heatmap_gt.squeeze())
                      / np.sum(heatmap_gt))
        else:
            recall = 0.

        return recall


class matching_score(object):
    """ Descriptors matching score. """
    def __init__(self, grid_size):
        self.grid_size = grid_size

    def __call__(self, points1, points2, desc_pred1,
                 desc_pred2, line_indices):
        b_size, _, Hc, Wc = desc_pred1.size()
        img_size = (Hc * self.grid_size, Wc * self.grid_size)
        device = desc_pred1.device

        # Extract valid keypoints
        n_points = line_indices.size()[1]
        valid_points = line_indices.bool().flatten()
        n_correct_points = torch.sum(valid_points).item()
        if n_correct_points == 0:
            return torch.tensor(0., dtype=torch.float, device=device)

        # Convert the keypoints to a grid suitable for interpolation
        grid1 = keypoints_to_grid(points1, img_size)
        grid2 = keypoints_to_grid(points2, img_size)

        # Extract the descriptors
        desc1 = F.grid_sample(desc_pred1, grid1).permute(
            0, 2, 3, 1).reshape(b_size * n_points, -1)[valid_points]
        desc1 = F.normalize(desc1, dim=1)
        desc2 = F.grid_sample(desc_pred2, grid2).permute(
            0, 2, 3, 1).reshape(b_size * n_points, -1)[valid_points]
        desc2 = F.normalize(desc2, dim=1)
        desc_dists = 2 - 2 * (desc1 @ desc2.t())

        # Compute percentage of correct matches
        matches0 = torch.min(desc_dists, dim=1)[1]
        matches1 = torch.min(desc_dists, dim=0)[1]
        matching_score = (matches1[matches0]
                          == torch.arange(len(matches0)).to(device))
        matching_score = matching_score.float().mean()
        return matching_score


def super_nms(prob_predictions, dist_thresh, prob_thresh=0.01, top_k=0):
    """ Non-maximum suppression adapted from SuperPoint. """
    # Iterate through batch dimension
    im_h = prob_predictions.shape[1]
    im_w = prob_predictions.shape[2]
    output_lst = []
    for i in range(prob_predictions.shape[0]):
        # print(i)
        prob_pred = prob_predictions[i, ...]
        # Filter the points using prob_thresh
        coord = np.where(prob_pred >= prob_thresh) # HW format
        points = np.concatenate((coord[0][..., None], coord[1][..., None]),
                                axis=1) # HW format

        # Get the probability score
        prob_score = prob_pred[points[:, 0], points[:, 1]]

        # Perform super nms
        # Modify the in_points to xy format (instead of HW format)
        in_points = np.concatenate((coord[1][..., None], coord[0][..., None],
                                    prob_score), axis=1).T
        keep_points_, keep_inds = nms_fast(in_points, im_h, im_w, dist_thresh)
        # Remember to flip outputs back to HW format
        keep_points = np.round(np.flip(keep_points_[:2, :], axis=0).T)
        keep_score = keep_points_[-1, :].T

        # Whether we only keep the topk value
        if (top_k > 0) or (top_k is None):
            k = min([keep_points.shape[0], top_k])
            keep_points = keep_points[:k, :]
            keep_score = keep_score[:k]

        # Re-compose the probability map
        output_map = np.zeros([im_h, im_w])
        output_map[keep_points[:, 0].astype(np.int),
                   keep_points[:, 1].astype(np.int)] = keep_score.squeeze()

        output_lst.append(output_map[None, ...])

    return np.concatenate(output_lst, axis=0)


def nms_fast(in_corners, H, W, dist_thresh):
    """
    Run a faster approximate Non-Max-Suppression on numpy corners shaped:
      3xN [x_i,y_i,conf_i]^T

    Algo summary: Create a grid sized HxW. Assign each corner location a 1,
    rest are zeros. Iterate through all the 1's and convert them to -1 or 0.
    Suppress points by setting nearby values to 0.

    Grid Value Legend:
    -1 : Kept.
     0 : Empty or suppressed.
     1 : To be processed (converted to either kept or supressed).

    NOTE: The NMS first rounds points to integers, so NMS distance might not
    be exactly dist_thresh. It also assumes points are within image boundary.

    Inputs
      in_corners - 3xN numpy array with corners [x_i, y_i, confidence_i]^T.
      H - Image height.
      W - Image width.
      dist_thresh - Distance to suppress, measured as an infinite distance.
    Returns
      nmsed_corners - 3xN numpy matrix with surviving corners.
      nmsed_inds - N length numpy vector with surviving corner indices.
    """
    grid = np.zeros((H, W)).astype(int)  # Track NMS data.
    inds = np.zeros((H, W)).astype(int)  # Store indices of points.
    # Sort by confidence and round to nearest int.
    inds1 = np.argsort(-in_corners[2, :])
    corners = in_corners[:, inds1]
    rcorners = corners[:2, :].round().astype(int)  # Rounded corners.
    # Check for edge case of 0 or 1 corners.
    if rcorners.shape[1] == 0:
        return np.zeros((3, 0)).astype(int), np.zeros(0).astype(int)
    if rcorners.shape[1] == 1:
        out = np.vstack((rcorners, in_corners[2])).reshape(3, 1)
        return out, np.zeros((1)).astype(int)
    # Initialize the grid.
    for i, rc in enumerate(rcorners.T):
        grid[rcorners[1, i], rcorners[0, i]] = 1
        inds[rcorners[1, i], rcorners[0, i]] = i
    # Pad the border of the grid, so that we can NMS points near the border.
    pad = dist_thresh
    grid = np.pad(grid, ((pad, pad), (pad, pad)), mode='constant')
    # Iterate through points, highest to lowest conf, suppress neighborhood.
    count = 0
    for i, rc in enumerate(rcorners.T):
        # Account for top and left padding.
        pt = (rc[0] + pad, rc[1] + pad)
        if grid[pt[1], pt[0]] == 1:  # If not yet suppressed.
            grid[pt[1] - pad:pt[1] + pad + 1, pt[0] - pad:pt[0] + pad + 1] = 0
            grid[pt[1], pt[0]] = -1
            count += 1
    # Get all surviving -1's and return sorted array of remaining corners.
    keepy, keepx = np.where(grid == -1)
    keepy, keepx = keepy - pad, keepx - pad
    inds_keep = inds[keepy, keepx]
    out = corners[:, inds_keep]
    values = out[-1, :]
    inds2 = np.argsort(-values)
    out = out[:, inds2]
    out_inds = inds1[inds_keep[inds2]]
    return out, out_inds