File size: 33,566 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
"""
This file implements the training process and all the summaries
"""
import os
import numpy as np
import cv2
import torch
from torch.nn.functional import pixel_shuffle, softmax
from torch.utils.data import DataLoader
import torch.utils.data.dataloader as torch_loader
from tensorboardX import SummaryWriter

from .dataset.dataset_util import get_dataset
from .model.model_util import get_model
from .model.loss import TotalLoss, get_loss_and_weights
from .model.metrics import AverageMeter, Metrics, super_nms
from .model.lr_scheduler import get_lr_scheduler
from .misc.train_utils import (convert_image, get_latest_checkpoint,
                               remove_old_checkpoints)


def customized_collate_fn(batch):
    """ Customized collate_fn. """
    batch_keys = ["image", "junction_map", "heatmap", "valid_mask"]
    list_keys = ["junctions", "line_map"]

    outputs = {}
    for key in batch_keys:
        outputs[key] = torch_loader.default_collate([b[key] for b in batch])
    for key in list_keys:
        outputs[key] = [b[key] for b in batch]

    return outputs


def restore_weights(model, state_dict, strict=True):
    """ Restore weights in compatible mode. """
    # Try to directly load state dict
    try:
        model.load_state_dict(state_dict, strict=strict)
    # Deal with some version compatibility issue (catch version incompatible)
    except:
        err = model.load_state_dict(state_dict, strict=False)
        
        # missing keys are those in model but not in state_dict
        missing_keys = err.missing_keys
        # Unexpected keys are those in state_dict but not in model
        unexpected_keys = err.unexpected_keys

        # Load mismatched keys manually
        model_dict = model.state_dict()
        for idx, key in enumerate(missing_keys):
            dict_keys = [_ for _ in unexpected_keys if not "tracked" in _]
            model_dict[key] = state_dict[dict_keys[idx]]
        model.load_state_dict(model_dict)
    
    return model


def train_net(args, dataset_cfg, model_cfg, output_path):
    """ Main training function. """
    # Add some version compatibility check
    if model_cfg.get("weighting_policy") is None:
        # Default to static
        model_cfg["weighting_policy"] = "static"

    # Get the train, val, test config
    train_cfg = model_cfg["train"]
    test_cfg = model_cfg["test"]

    # Create train and test dataset
    print("\t Initializing dataset...")
    train_dataset, train_collate_fn = get_dataset("train", dataset_cfg)
    test_dataset, test_collate_fn = get_dataset("test", dataset_cfg)

    # Create the dataloader
    train_loader = DataLoader(train_dataset,
                              batch_size=train_cfg["batch_size"],
                              num_workers=8,
                              shuffle=True, pin_memory=True,
                              collate_fn=train_collate_fn)
    test_loader = DataLoader(test_dataset,
                             batch_size=test_cfg.get("batch_size", 1),
                             num_workers=test_cfg.get("num_workers", 1),
                             shuffle=False, pin_memory=False,
                             collate_fn=test_collate_fn)
    print("\t Successfully intialized dataloaders.")


    # Get the loss function and weight first
    loss_funcs, loss_weights = get_loss_and_weights(model_cfg)

    # If resume.
    if args.resume:
        # Create model and load the state dict
        checkpoint = get_latest_checkpoint(args.resume_path,
                                           args.checkpoint_name)
        model = get_model(model_cfg, loss_weights)
        model = restore_weights(model, checkpoint["model_state_dict"])
        model = model.cuda()
        optimizer = torch.optim.Adam(
            [{"params": model.parameters(),
              "initial_lr": model_cfg["learning_rate"]}], 
            model_cfg["learning_rate"], 
            amsgrad=True)
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        # Optionally get the learning rate scheduler
        scheduler = get_lr_scheduler(
            lr_decay=model_cfg.get("lr_decay", False),
            lr_decay_cfg=model_cfg.get("lr_decay_cfg", None),
            optimizer=optimizer)
        # If we start to use learning rate scheduler from the middle
        if ((scheduler is not None)
            and (checkpoint.get("scheduler_state_dict", None) is not None)):
            scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
        start_epoch = checkpoint["epoch"] + 1
    # Initialize all the components.
    else:
        # Create model and optimizer
        model = get_model(model_cfg, loss_weights)
        # Optionally get the pretrained wieghts
        if args.pretrained:
            print("\t [Debug] Loading pretrained weights...")
            checkpoint = get_latest_checkpoint(args.pretrained_path,
                                               args.checkpoint_name)
            # If auto weighting restore from non-auto weighting
            model = restore_weights(model, checkpoint["model_state_dict"],
                                    strict=False)
            print("\t [Debug] Finished loading pretrained weights!")
        
        model = model.cuda()
        optimizer = torch.optim.Adam(
            [{"params": model.parameters(),
              "initial_lr": model_cfg["learning_rate"]}], 
            model_cfg["learning_rate"], 
            amsgrad=True)
        # Optionally get the learning rate scheduler
        scheduler = get_lr_scheduler(
            lr_decay=model_cfg.get("lr_decay", False),
            lr_decay_cfg=model_cfg.get("lr_decay_cfg", None),
            optimizer=optimizer)
        start_epoch = 0
    
    print("\t Successfully initialized model")

    # Define the total loss
    policy = model_cfg.get("weighting_policy", "static")
    loss_func = TotalLoss(loss_funcs, loss_weights, policy).cuda()
    if "descriptor_decoder" in model_cfg:
        metric_func = Metrics(model_cfg["detection_thresh"],
                              model_cfg["prob_thresh"],
                              model_cfg["descriptor_loss_cfg"]["grid_size"],
                              desc_metric_lst='all')
    else:
        metric_func = Metrics(model_cfg["detection_thresh"],
                              model_cfg["prob_thresh"],
                              model_cfg["grid_size"])

    # Define the summary writer
    logdir = os.path.join(output_path, "log")
    writer = SummaryWriter(logdir=logdir)

    # Start the training loop
    for epoch in range(start_epoch, model_cfg["epochs"]):
        # Record the learning rate
        current_lr = optimizer.state_dict()["param_groups"][0]["lr"]
        writer.add_scalar("LR/lr", current_lr, epoch)

        # Train for one epochs
        print("\n\n================== Training ====================")
        train_single_epoch(
            model=model,
            model_cfg=model_cfg,
            optimizer=optimizer,
            loss_func=loss_func,
            metric_func=metric_func,
            train_loader=train_loader,
            writer=writer,
            epoch=epoch)

        # Do the validation
        print("\n\n================== Validation ==================")
        validate(
            model=model,
            model_cfg=model_cfg,
            loss_func=loss_func,
            metric_func=metric_func,
            val_loader=test_loader,
            writer=writer,
            epoch=epoch)

        # Update the scheduler
        if scheduler is not None:
            scheduler.step()

        # Save checkpoints
        file_name = os.path.join(output_path,
                                 "checkpoint-epoch%03d-end.tar"%(epoch))
        print("[Info] Saving checkpoint %s ..." % file_name)
        save_dict = {
            "epoch": epoch,
            "model_state_dict": model.state_dict(),
            "optimizer_state_dict": optimizer.state_dict(),
            "model_cfg": model_cfg}
        if scheduler is not None:
            save_dict.update({"scheduler_state_dict": scheduler.state_dict()})
        torch.save(save_dict, file_name)

        # Remove the outdated checkpoints
        remove_old_checkpoints(output_path, model_cfg.get("max_ckpt", 15))


def train_single_epoch(model, model_cfg, optimizer, loss_func, metric_func,
                       train_loader, writer, epoch):
    """ Train for one epoch. """
    # Switch the model to training mode
    model.train()

    # Initialize the average meter
    compute_descriptors = loss_func.compute_descriptors
    if compute_descriptors:
        average_meter = AverageMeter(is_training=True, desc_metric_lst='all')
    else:
        average_meter = AverageMeter(is_training=True)

    # The training loop
    for idx, data in enumerate(train_loader):
        if compute_descriptors:
            junc_map = data["ref_junction_map"].cuda()
            junc_map2 = data["target_junction_map"].cuda()
            heatmap = data["ref_heatmap"].cuda()
            heatmap2 = data["target_heatmap"].cuda()
            line_points = data["ref_line_points"].cuda()
            line_points2 = data["target_line_points"].cuda()
            line_indices = data["ref_line_indices"].cuda()
            valid_mask = data["ref_valid_mask"].cuda()
            valid_mask2 = data["target_valid_mask"].cuda()
            input_images = data["ref_image"].cuda()
            input_images2 = data["target_image"].cuda()

            # Run the forward pass
            outputs = model(input_images)
            outputs2 = model(input_images2)

            # Compute losses
            losses = loss_func.forward_descriptors(
                outputs["junctions"], outputs2["junctions"],
                junc_map, junc_map2, outputs["heatmap"], outputs2["heatmap"],
                heatmap, heatmap2, line_points, line_points2,
                line_indices, outputs['descriptors'], outputs2['descriptors'],
                epoch, valid_mask, valid_mask2)
        else:
            junc_map = data["junction_map"].cuda()
            heatmap = data["heatmap"].cuda()
            valid_mask = data["valid_mask"].cuda()
            input_images = data["image"].cuda()

            # Run the forward pass
            outputs = model(input_images)

            # Compute losses
            losses = loss_func(
                outputs["junctions"], junc_map,
                outputs["heatmap"], heatmap,
                valid_mask)
        
        total_loss = losses["total_loss"]

        # Update the model
        optimizer.zero_grad()
        total_loss.backward()                     
        optimizer.step()

        # Compute the global step
        global_step = epoch * len(train_loader) + idx
        ############## Measure the metric error #########################
        # Only do this when needed
        if (((idx % model_cfg["disp_freq"]) == 0)
            or ((idx % model_cfg["summary_freq"]) == 0)):
            junc_np = convert_junc_predictions(
                outputs["junctions"], model_cfg["grid_size"],
                model_cfg["detection_thresh"], 300)
            junc_map_np = junc_map.cpu().numpy().transpose(0, 2, 3, 1)

            # Always fetch only one channel (compatible with L1, L2, and CE)
            if outputs["heatmap"].shape[1] == 2:
                heatmap_np = softmax(outputs["heatmap"].detach(),
                                     dim=1).cpu().numpy()
                heatmap_np = heatmap_np.transpose(0, 2, 3, 1)[:, :, :, 1:]
            else:
                heatmap_np = torch.sigmoid(outputs["heatmap"].detach())
                heatmap_np = heatmap_np.cpu().numpy().transpose(0, 2, 3, 1)
            
            heatmap_gt_np = heatmap.cpu().numpy().transpose(0, 2, 3, 1)
            valid_mask_np = valid_mask.cpu().numpy().transpose(0, 2, 3, 1)

            # Evaluate metric results
            if compute_descriptors:
                metric_func.evaluate(
                    junc_np["junc_pred"], junc_np["junc_pred_nms"],
                    junc_map_np, heatmap_np, heatmap_gt_np, valid_mask_np,
                    line_points, line_points2, outputs["descriptors"],
                    outputs2["descriptors"], line_indices)
            else:
                metric_func.evaluate(
                    junc_np["junc_pred"], junc_np["junc_pred_nms"],
                    junc_map_np, heatmap_np, heatmap_gt_np, valid_mask_np)
            # Update average meter
            junc_loss = losses["junc_loss"].item()
            heatmap_loss = losses["heatmap_loss"].item()
            loss_dict = {
                "junc_loss": junc_loss,
                "heatmap_loss": heatmap_loss,
                "total_loss": total_loss.item()}
            if compute_descriptors:
                descriptor_loss = losses["descriptor_loss"].item()
                loss_dict["descriptor_loss"] = losses["descriptor_loss"].item()

            average_meter.update(metric_func, loss_dict, num_samples=junc_map.shape[0])

        # Display the progress
        if (idx % model_cfg["disp_freq"]) == 0:
            results = metric_func.metric_results
            average = average_meter.average()
            # Get gpu memory usage in GB
            gpu_mem_usage = torch.cuda.max_memory_allocated() / (1024 ** 3)
            if compute_descriptors:
                print("Epoch [%d / %d] Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f), descriptor_loss=%.4f (%.4f), gpu_mem=%.4fGB"
                      % (epoch, model_cfg["epochs"], idx, len(train_loader),
                         total_loss.item(), average["total_loss"], junc_loss,
                         average["junc_loss"], heatmap_loss,
                         average["heatmap_loss"], descriptor_loss,
                         average["descriptor_loss"], gpu_mem_usage))
            else:
                print("Epoch [%d / %d] Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f), gpu_mem=%.4fGB"
                      % (epoch, model_cfg["epochs"], idx, len(train_loader),
                         total_loss.item(), average["total_loss"],
                         junc_loss, average["junc_loss"], heatmap_loss,
                         average["heatmap_loss"], gpu_mem_usage))
            print("\t Junction     precision=%.4f (%.4f) / recall=%.4f (%.4f)"
                  % (results["junc_precision"], average["junc_precision"],
                     results["junc_recall"], average["junc_recall"]))
            print("\t Junction nms precision=%.4f (%.4f) / recall=%.4f (%.4f)"
                  % (results["junc_precision_nms"],
                     average["junc_precision_nms"],
                     results["junc_recall_nms"], average["junc_recall_nms"]))
            print("\t Heatmap      precision=%.4f (%.4f) / recall=%.4f (%.4f)"
                  %(results["heatmap_precision"],
                    average["heatmap_precision"],
                    results["heatmap_recall"], average["heatmap_recall"]))
            if compute_descriptors:
                print("\t Descriptors  matching score=%.4f (%.4f)"
                      %(results["matching_score"], average["matching_score"]))

        # Record summaries
        if (idx % model_cfg["summary_freq"]) == 0:
            results = metric_func.metric_results
            average = average_meter.average()
            # Add the shared losses
            scalar_summaries = {
                "junc_loss": junc_loss,
                "heatmap_loss": heatmap_loss,
                "total_loss": total_loss.detach().cpu().numpy(),
                "metrics": results,
                "average": average}
            # Add descriptor terms
            if compute_descriptors:
                scalar_summaries["descriptor_loss"] = descriptor_loss
                scalar_summaries["w_desc"] = losses["w_desc"]

            # Add weighting terms (even for static terms)
            scalar_summaries["w_junc"] = losses["w_junc"]
            scalar_summaries["w_heatmap"] = losses["w_heatmap"]
            scalar_summaries["reg_loss"] = losses["reg_loss"].item()

            num_images = 3
            junc_pred_binary = (junc_np["junc_pred"][:num_images, ...]
                                > model_cfg["detection_thresh"])
            junc_pred_nms_binary = (junc_np["junc_pred_nms"][:num_images, ...]
                                    > model_cfg["detection_thresh"])
            image_summaries = {
                "image": input_images.cpu().numpy()[:num_images, ...],
                "valid_mask": valid_mask_np[:num_images, ...],
                "junc_map_pred": junc_pred_binary,
                "junc_map_pred_nms": junc_pred_nms_binary,
                "junc_map_gt": junc_map_np[:num_images, ...],
                "junc_prob_map": junc_np["junc_prob"][:num_images, ...],
                "heatmap_pred": heatmap_np[:num_images, ...],
                "heatmap_gt": heatmap_gt_np[:num_images, ...]}
            # Record the training summary
            record_train_summaries(
                writer, global_step, scalars=scalar_summaries,
                images=image_summaries)


def validate(model, model_cfg, loss_func, metric_func, val_loader, writer, epoch):
    """ Validation. """
    # Switch the model to eval mode
    model.eval()

    # Initialize the average meter
    compute_descriptors = loss_func.compute_descriptors
    if compute_descriptors:
        average_meter = AverageMeter(is_training=True, desc_metric_lst='all')
    else:
        average_meter = AverageMeter(is_training=True)

    # The validation loop
    for idx, data in enumerate(val_loader):
        if compute_descriptors:
            junc_map = data["ref_junction_map"].cuda()
            junc_map2 = data["target_junction_map"].cuda()
            heatmap = data["ref_heatmap"].cuda()
            heatmap2 = data["target_heatmap"].cuda()
            line_points = data["ref_line_points"].cuda()
            line_points2 = data["target_line_points"].cuda()
            line_indices = data["ref_line_indices"].cuda()
            valid_mask = data["ref_valid_mask"].cuda()
            valid_mask2 = data["target_valid_mask"].cuda()
            input_images = data["ref_image"].cuda()
            input_images2 = data["target_image"].cuda()

            # Run the forward pass
            with torch.no_grad():
                outputs = model(input_images)
                outputs2 = model(input_images2)

                # Compute losses
                losses = loss_func.forward_descriptors(
                    outputs["junctions"], outputs2["junctions"],
                    junc_map, junc_map2, outputs["heatmap"],
                    outputs2["heatmap"], heatmap, heatmap2, line_points,
                    line_points2, line_indices, outputs['descriptors'],
                    outputs2['descriptors'], epoch, valid_mask, valid_mask2)
        else:
            junc_map = data["junction_map"].cuda()
            heatmap = data["heatmap"].cuda()
            valid_mask = data["valid_mask"].cuda()
            input_images = data["image"].cuda()

            # Run the forward pass
            with torch.no_grad():
                outputs = model(input_images)

                # Compute losses
                losses = loss_func(
                    outputs["junctions"], junc_map,
                    outputs["heatmap"], heatmap,
                    valid_mask)
        total_loss = losses["total_loss"]

        ############## Measure the metric error #########################
        junc_np = convert_junc_predictions(
            outputs["junctions"], model_cfg["grid_size"],
            model_cfg["detection_thresh"], 300)
        junc_map_np = junc_map.cpu().numpy().transpose(0, 2, 3, 1)
        # Always fetch only one channel (compatible with L1, L2, and CE)
        if outputs["heatmap"].shape[1] == 2:
            heatmap_np = softmax(outputs["heatmap"].detach(),
                                 dim=1).cpu().numpy().transpose(0, 2, 3, 1)
            heatmap_np = heatmap_np[:, :, :, 1:]
        else:
            heatmap_np = torch.sigmoid(outputs["heatmap"].detach())
            heatmap_np = heatmap_np.cpu().numpy().transpose(0, 2, 3, 1)


        heatmap_gt_np = heatmap.cpu().numpy().transpose(0, 2, 3, 1)
        valid_mask_np = valid_mask.cpu().numpy().transpose(0, 2, 3, 1)

        # Evaluate metric results
        if compute_descriptors:
            metric_func.evaluate(
                junc_np["junc_pred"], junc_np["junc_pred_nms"],
                junc_map_np, heatmap_np, heatmap_gt_np, valid_mask_np,
                line_points, line_points2, outputs["descriptors"],
                outputs2["descriptors"], line_indices)
        else:
            metric_func.evaluate(
                junc_np["junc_pred"], junc_np["junc_pred_nms"], junc_map_np,
                heatmap_np, heatmap_gt_np, valid_mask_np)
        # Update average meter
        junc_loss = losses["junc_loss"].item()
        heatmap_loss = losses["heatmap_loss"].item()
        loss_dict = {
            "junc_loss": junc_loss,
            "heatmap_loss": heatmap_loss,
            "total_loss": total_loss.item()}
        if compute_descriptors:
            descriptor_loss = losses["descriptor_loss"].item()
            loss_dict["descriptor_loss"] = losses["descriptor_loss"].item()
        average_meter.update(metric_func, loss_dict, num_samples=junc_map.shape[0])

        # Display the progress
        if (idx % model_cfg["disp_freq"]) == 0:
            results = metric_func.metric_results
            average = average_meter.average()
            if compute_descriptors:
                print("Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f), descriptor_loss=%.4f (%.4f)"
                      % (idx, len(val_loader),
                         total_loss.item(), average["total_loss"],
                         junc_loss, average["junc_loss"],
                         heatmap_loss, average["heatmap_loss"],
                         descriptor_loss, average["descriptor_loss"]))
            else:
                print("Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f)"
                      % (idx, len(val_loader),
                         total_loss.item(), average["total_loss"],
                         junc_loss, average["junc_loss"],
                         heatmap_loss, average["heatmap_loss"]))
            print("\t Junction     precision=%.4f (%.4f) / recall=%.4f (%.4f)"
                  % (results["junc_precision"], average["junc_precision"],
                     results["junc_recall"], average["junc_recall"]))
            print("\t Junction nms precision=%.4f (%.4f) / recall=%.4f (%.4f)"
                  % (results["junc_precision_nms"],
                     average["junc_precision_nms"],
                     results["junc_recall_nms"], average["junc_recall_nms"]))
            print("\t Heatmap      precision=%.4f (%.4f) / recall=%.4f (%.4f)"
                  % (results["heatmap_precision"],
                     average["heatmap_precision"],
                     results["heatmap_recall"], average["heatmap_recall"]))
            if compute_descriptors:
                print("\t Descriptors  matching score=%.4f (%.4f)"
                      %(results["matching_score"], average["matching_score"]))

    # Record summaries
    average = average_meter.average()
    scalar_summaries = {"average": average}
    # Record the training summary
    record_test_summaries(writer, epoch, scalar_summaries)


def convert_junc_predictions(predictions, grid_size,
                             detect_thresh=1/65, topk=300):
    """ Convert torch predictions to numpy arrays for evaluation. """
    # Convert to probability outputs first
    junc_prob = softmax(predictions.detach(), dim=1).cpu()
    junc_pred = junc_prob[:, :-1, :, :]

    junc_prob_np = junc_prob.numpy().transpose(0, 2, 3, 1)[:, :, :, :-1]
    junc_prob_np = np.sum(junc_prob_np, axis=-1)
    junc_pred_np = pixel_shuffle(
        junc_pred, grid_size).cpu().numpy().transpose(0, 2, 3, 1)
    junc_pred_np_nms = super_nms(junc_pred_np, grid_size, detect_thresh, topk)
    junc_pred_np = junc_pred_np.squeeze(-1)

    return {"junc_pred": junc_pred_np, "junc_pred_nms": junc_pred_np_nms,
            "junc_prob": junc_prob_np}


def record_train_summaries(writer, global_step, scalars, images):
    """ Record training summaries. """
    # Record the scalar summaries
    results = scalars["metrics"]
    average = scalars["average"]

    # GPU memory part
    # Get gpu memory usage in GB
    gpu_mem_usage = torch.cuda.max_memory_allocated() / (1024 ** 3)
    writer.add_scalar("GPU/GPU_memory_usage", gpu_mem_usage, global_step)

    # Loss part
    writer.add_scalar("Train_loss/junc_loss", scalars["junc_loss"],
                      global_step)
    writer.add_scalar("Train_loss/heatmap_loss", scalars["heatmap_loss"],
                      global_step)
    writer.add_scalar("Train_loss/total_loss", scalars["total_loss"],
                      global_step)
    # Add regularization loss
    if "reg_loss" in scalars.keys():
        writer.add_scalar("Train_loss/reg_loss", scalars["reg_loss"],
                          global_step)
    # Add descriptor loss
    if "descriptor_loss" in scalars.keys():
        key = "descriptor_loss"
        writer.add_scalar("Train_loss/%s"%(key), scalars[key], global_step)
        writer.add_scalar("Train_loss_average/%s"%(key), average[key],
                          global_step)
    
    # Record weighting
    for key in scalars.keys():
        if "w_" in key:
            writer.add_scalar("Train_weight/%s"%(key), scalars[key],
                              global_step)
    
    # Smoothed loss
    writer.add_scalar("Train_loss_average/junc_loss", average["junc_loss"],
                      global_step)
    writer.add_scalar("Train_loss_average/heatmap_loss",
                      average["heatmap_loss"], global_step)
    writer.add_scalar("Train_loss_average/total_loss", average["total_loss"],
                      global_step)
    # Add smoothed descriptor loss
    if "descriptor_loss" in average.keys():
        writer.add_scalar("Train_loss_average/descriptor_loss",
                          average["descriptor_loss"], global_step)

    # Metrics part
    writer.add_scalar("Train_metrics/junc_precision",
                      results["junc_precision"], global_step)
    writer.add_scalar("Train_metrics/junc_precision_nms",
                      results["junc_precision_nms"], global_step)
    writer.add_scalar("Train_metrics/junc_recall",
                      results["junc_recall"], global_step)
    writer.add_scalar("Train_metrics/junc_recall_nms",
                      results["junc_recall_nms"], global_step)
    writer.add_scalar("Train_metrics/heatmap_precision",
                      results["heatmap_precision"], global_step)
    writer.add_scalar("Train_metrics/heatmap_recall",
                      results["heatmap_recall"], global_step)
    # Add descriptor metric
    if "matching_score" in results.keys():
        writer.add_scalar("Train_metrics/matching_score",
                          results["matching_score"], global_step)

    # Average part
    writer.add_scalar("Train_metrics_average/junc_precision",
                      average["junc_precision"], global_step)
    writer.add_scalar("Train_metrics_average/junc_precision_nms",
                      average["junc_precision_nms"], global_step)
    writer.add_scalar("Train_metrics_average/junc_recall",
                      average["junc_recall"], global_step)
    writer.add_scalar("Train_metrics_average/junc_recall_nms",
                      average["junc_recall_nms"], global_step)
    writer.add_scalar("Train_metrics_average/heatmap_precision",
                      average["heatmap_precision"], global_step)
    writer.add_scalar("Train_metrics_average/heatmap_recall",
                      average["heatmap_recall"], global_step)
    # Add smoothed descriptor metric
    if "matching_score" in average.keys():
        writer.add_scalar("Train_metrics_average/matching_score",
                          average["matching_score"], global_step)

    # Record the image summary
    # Image part
    image_tensor = convert_image(images["image"], 1)
    valid_masks = convert_image(images["valid_mask"], -1)
    writer.add_images("Train/images", image_tensor, global_step,
                      dataformats="NCHW")
    writer.add_images("Train/valid_map", valid_masks, global_step,
                      dataformats="NHWC")

    # Heatmap part
    writer.add_images("Train/heatmap_gt",
                      convert_image(images["heatmap_gt"], -1), global_step,
                      dataformats="NHWC")
    writer.add_images("Train/heatmap_pred",
                      convert_image(images["heatmap_pred"], -1), global_step,
                      dataformats="NHWC")

    # Junction prediction part
    junc_plots = plot_junction_detection(
        image_tensor, images["junc_map_pred"],
        images["junc_map_pred_nms"], images["junc_map_gt"])
    writer.add_images("Train/junc_gt", junc_plots["junc_gt_plot"] / 255.,
                      global_step, dataformats="NHWC")
    writer.add_images("Train/junc_pred", junc_plots["junc_pred_plot"] / 255.,
                      global_step, dataformats="NHWC")
    writer.add_images("Train/junc_pred_nms",
                      junc_plots["junc_pred_nms_plot"] / 255., global_step,
                      dataformats="NHWC")
    writer.add_images(
        "Train/junc_prob_map",
        convert_image(images["junc_prob_map"][..., None], axis=-1),
        global_step, dataformats="NHWC")


def record_test_summaries(writer, epoch, scalars):
    """ Record testing summaries. """
    average = scalars["average"]

    # Average loss
    writer.add_scalar("Val_loss/junc_loss", average["junc_loss"], epoch)
    writer.add_scalar("Val_loss/heatmap_loss", average["heatmap_loss"], epoch)
    writer.add_scalar("Val_loss/total_loss", average["total_loss"], epoch)
    # Add descriptor loss
    if "descriptor_loss" in average.keys():
        key = "descriptor_loss"
        writer.add_scalar("Val_loss/%s"%(key), average[key], epoch)

    # Average metrics
    writer.add_scalar("Val_metrics/junc_precision", average["junc_precision"],
                      epoch)
    writer.add_scalar("Val_metrics/junc_precision_nms",
                      average["junc_precision_nms"], epoch)
    writer.add_scalar("Val_metrics/junc_recall",
                      average["junc_recall"], epoch)
    writer.add_scalar("Val_metrics/junc_recall_nms",
                      average["junc_recall_nms"], epoch)
    writer.add_scalar("Val_metrics/heatmap_precision",
                      average["heatmap_precision"], epoch)
    writer.add_scalar("Val_metrics/heatmap_recall",
                      average["heatmap_recall"], epoch)
    # Add descriptor metric
    if "matching_score" in average.keys():
        writer.add_scalar("Val_metrics/matching_score",
                          average["matching_score"], epoch)


def plot_junction_detection(image_tensor, junc_pred_tensor,
                            junc_pred_nms_tensor, junc_gt_tensor):
    """ Plot the junction points on images. """
    # Get the batch_size
    batch_size = image_tensor.shape[0]

    # Process through batch dimension
    junc_pred_lst = []
    junc_pred_nms_lst = []
    junc_gt_lst = []
    for i in range(batch_size):
        # Convert image to 255 uint8
        image = (image_tensor[i, :, :, :]
                 * 255.).astype(np.uint8).transpose(1,2,0)

        # Plot groundtruth onto image
        junc_gt = junc_gt_tensor[i, ...]
        coord_gt = np.where(junc_gt.squeeze() > 0)
        points_gt = np.concatenate((coord_gt[0][..., None],
                                    coord_gt[1][..., None]),
                                    axis=1)
        plot_gt = image.copy()
        for id in range(points_gt.shape[0]):
            cv2.circle(plot_gt, tuple(np.flip(points_gt[id, :])), 3,
                       color=(255, 0, 0), thickness=2)
        junc_gt_lst.append(plot_gt[None, ...])

        # Plot junc_pred
        junc_pred = junc_pred_tensor[i, ...]
        coord_pred = np.where(junc_pred > 0)
        points_pred = np.concatenate((coord_pred[0][..., None],
                                      coord_pred[1][..., None]),
                                      axis=1)
        plot_pred = image.copy()
        for id in range(points_pred.shape[0]):
            cv2.circle(plot_pred, tuple(np.flip(points_pred[id, :])), 3,
                       color=(0, 255, 0), thickness=2)
        junc_pred_lst.append(plot_pred[None, ...])

        # Plot junc_pred_nms
        junc_pred_nms = junc_pred_nms_tensor[i, ...]
        coord_pred_nms = np.where(junc_pred_nms > 0)
        points_pred_nms = np.concatenate((coord_pred_nms[0][..., None],
                                          coord_pred_nms[1][..., None]),
                                          axis=1)
        plot_pred_nms = image.copy()
        for id in range(points_pred_nms.shape[0]):
            cv2.circle(plot_pred_nms, tuple(np.flip(points_pred_nms[id, :])),
                       3, color=(0, 255, 0), thickness=2)
        junc_pred_nms_lst.append(plot_pred_nms[None, ...])

    return {"junc_gt_plot": np.concatenate(junc_gt_lst, axis=0),
            "junc_pred_plot": np.concatenate(junc_pred_lst, axis=0),
            "junc_pred_nms_plot": np.concatenate(junc_pred_nms_lst, axis=0)}