Spaces:
Running
Running
File size: 33,566 Bytes
a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
"""
This file implements the training process and all the summaries
"""
import os
import numpy as np
import cv2
import torch
from torch.nn.functional import pixel_shuffle, softmax
from torch.utils.data import DataLoader
import torch.utils.data.dataloader as torch_loader
from tensorboardX import SummaryWriter
from .dataset.dataset_util import get_dataset
from .model.model_util import get_model
from .model.loss import TotalLoss, get_loss_and_weights
from .model.metrics import AverageMeter, Metrics, super_nms
from .model.lr_scheduler import get_lr_scheduler
from .misc.train_utils import (convert_image, get_latest_checkpoint,
remove_old_checkpoints)
def customized_collate_fn(batch):
""" Customized collate_fn. """
batch_keys = ["image", "junction_map", "heatmap", "valid_mask"]
list_keys = ["junctions", "line_map"]
outputs = {}
for key in batch_keys:
outputs[key] = torch_loader.default_collate([b[key] for b in batch])
for key in list_keys:
outputs[key] = [b[key] for b in batch]
return outputs
def restore_weights(model, state_dict, strict=True):
""" Restore weights in compatible mode. """
# Try to directly load state dict
try:
model.load_state_dict(state_dict, strict=strict)
# Deal with some version compatibility issue (catch version incompatible)
except:
err = model.load_state_dict(state_dict, strict=False)
# missing keys are those in model but not in state_dict
missing_keys = err.missing_keys
# Unexpected keys are those in state_dict but not in model
unexpected_keys = err.unexpected_keys
# Load mismatched keys manually
model_dict = model.state_dict()
for idx, key in enumerate(missing_keys):
dict_keys = [_ for _ in unexpected_keys if not "tracked" in _]
model_dict[key] = state_dict[dict_keys[idx]]
model.load_state_dict(model_dict)
return model
def train_net(args, dataset_cfg, model_cfg, output_path):
""" Main training function. """
# Add some version compatibility check
if model_cfg.get("weighting_policy") is None:
# Default to static
model_cfg["weighting_policy"] = "static"
# Get the train, val, test config
train_cfg = model_cfg["train"]
test_cfg = model_cfg["test"]
# Create train and test dataset
print("\t Initializing dataset...")
train_dataset, train_collate_fn = get_dataset("train", dataset_cfg)
test_dataset, test_collate_fn = get_dataset("test", dataset_cfg)
# Create the dataloader
train_loader = DataLoader(train_dataset,
batch_size=train_cfg["batch_size"],
num_workers=8,
shuffle=True, pin_memory=True,
collate_fn=train_collate_fn)
test_loader = DataLoader(test_dataset,
batch_size=test_cfg.get("batch_size", 1),
num_workers=test_cfg.get("num_workers", 1),
shuffle=False, pin_memory=False,
collate_fn=test_collate_fn)
print("\t Successfully intialized dataloaders.")
# Get the loss function and weight first
loss_funcs, loss_weights = get_loss_and_weights(model_cfg)
# If resume.
if args.resume:
# Create model and load the state dict
checkpoint = get_latest_checkpoint(args.resume_path,
args.checkpoint_name)
model = get_model(model_cfg, loss_weights)
model = restore_weights(model, checkpoint["model_state_dict"])
model = model.cuda()
optimizer = torch.optim.Adam(
[{"params": model.parameters(),
"initial_lr": model_cfg["learning_rate"]}],
model_cfg["learning_rate"],
amsgrad=True)
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
# Optionally get the learning rate scheduler
scheduler = get_lr_scheduler(
lr_decay=model_cfg.get("lr_decay", False),
lr_decay_cfg=model_cfg.get("lr_decay_cfg", None),
optimizer=optimizer)
# If we start to use learning rate scheduler from the middle
if ((scheduler is not None)
and (checkpoint.get("scheduler_state_dict", None) is not None)):
scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
start_epoch = checkpoint["epoch"] + 1
# Initialize all the components.
else:
# Create model and optimizer
model = get_model(model_cfg, loss_weights)
# Optionally get the pretrained wieghts
if args.pretrained:
print("\t [Debug] Loading pretrained weights...")
checkpoint = get_latest_checkpoint(args.pretrained_path,
args.checkpoint_name)
# If auto weighting restore from non-auto weighting
model = restore_weights(model, checkpoint["model_state_dict"],
strict=False)
print("\t [Debug] Finished loading pretrained weights!")
model = model.cuda()
optimizer = torch.optim.Adam(
[{"params": model.parameters(),
"initial_lr": model_cfg["learning_rate"]}],
model_cfg["learning_rate"],
amsgrad=True)
# Optionally get the learning rate scheduler
scheduler = get_lr_scheduler(
lr_decay=model_cfg.get("lr_decay", False),
lr_decay_cfg=model_cfg.get("lr_decay_cfg", None),
optimizer=optimizer)
start_epoch = 0
print("\t Successfully initialized model")
# Define the total loss
policy = model_cfg.get("weighting_policy", "static")
loss_func = TotalLoss(loss_funcs, loss_weights, policy).cuda()
if "descriptor_decoder" in model_cfg:
metric_func = Metrics(model_cfg["detection_thresh"],
model_cfg["prob_thresh"],
model_cfg["descriptor_loss_cfg"]["grid_size"],
desc_metric_lst='all')
else:
metric_func = Metrics(model_cfg["detection_thresh"],
model_cfg["prob_thresh"],
model_cfg["grid_size"])
# Define the summary writer
logdir = os.path.join(output_path, "log")
writer = SummaryWriter(logdir=logdir)
# Start the training loop
for epoch in range(start_epoch, model_cfg["epochs"]):
# Record the learning rate
current_lr = optimizer.state_dict()["param_groups"][0]["lr"]
writer.add_scalar("LR/lr", current_lr, epoch)
# Train for one epochs
print("\n\n================== Training ====================")
train_single_epoch(
model=model,
model_cfg=model_cfg,
optimizer=optimizer,
loss_func=loss_func,
metric_func=metric_func,
train_loader=train_loader,
writer=writer,
epoch=epoch)
# Do the validation
print("\n\n================== Validation ==================")
validate(
model=model,
model_cfg=model_cfg,
loss_func=loss_func,
metric_func=metric_func,
val_loader=test_loader,
writer=writer,
epoch=epoch)
# Update the scheduler
if scheduler is not None:
scheduler.step()
# Save checkpoints
file_name = os.path.join(output_path,
"checkpoint-epoch%03d-end.tar"%(epoch))
print("[Info] Saving checkpoint %s ..." % file_name)
save_dict = {
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"model_cfg": model_cfg}
if scheduler is not None:
save_dict.update({"scheduler_state_dict": scheduler.state_dict()})
torch.save(save_dict, file_name)
# Remove the outdated checkpoints
remove_old_checkpoints(output_path, model_cfg.get("max_ckpt", 15))
def train_single_epoch(model, model_cfg, optimizer, loss_func, metric_func,
train_loader, writer, epoch):
""" Train for one epoch. """
# Switch the model to training mode
model.train()
# Initialize the average meter
compute_descriptors = loss_func.compute_descriptors
if compute_descriptors:
average_meter = AverageMeter(is_training=True, desc_metric_lst='all')
else:
average_meter = AverageMeter(is_training=True)
# The training loop
for idx, data in enumerate(train_loader):
if compute_descriptors:
junc_map = data["ref_junction_map"].cuda()
junc_map2 = data["target_junction_map"].cuda()
heatmap = data["ref_heatmap"].cuda()
heatmap2 = data["target_heatmap"].cuda()
line_points = data["ref_line_points"].cuda()
line_points2 = data["target_line_points"].cuda()
line_indices = data["ref_line_indices"].cuda()
valid_mask = data["ref_valid_mask"].cuda()
valid_mask2 = data["target_valid_mask"].cuda()
input_images = data["ref_image"].cuda()
input_images2 = data["target_image"].cuda()
# Run the forward pass
outputs = model(input_images)
outputs2 = model(input_images2)
# Compute losses
losses = loss_func.forward_descriptors(
outputs["junctions"], outputs2["junctions"],
junc_map, junc_map2, outputs["heatmap"], outputs2["heatmap"],
heatmap, heatmap2, line_points, line_points2,
line_indices, outputs['descriptors'], outputs2['descriptors'],
epoch, valid_mask, valid_mask2)
else:
junc_map = data["junction_map"].cuda()
heatmap = data["heatmap"].cuda()
valid_mask = data["valid_mask"].cuda()
input_images = data["image"].cuda()
# Run the forward pass
outputs = model(input_images)
# Compute losses
losses = loss_func(
outputs["junctions"], junc_map,
outputs["heatmap"], heatmap,
valid_mask)
total_loss = losses["total_loss"]
# Update the model
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
# Compute the global step
global_step = epoch * len(train_loader) + idx
############## Measure the metric error #########################
# Only do this when needed
if (((idx % model_cfg["disp_freq"]) == 0)
or ((idx % model_cfg["summary_freq"]) == 0)):
junc_np = convert_junc_predictions(
outputs["junctions"], model_cfg["grid_size"],
model_cfg["detection_thresh"], 300)
junc_map_np = junc_map.cpu().numpy().transpose(0, 2, 3, 1)
# Always fetch only one channel (compatible with L1, L2, and CE)
if outputs["heatmap"].shape[1] == 2:
heatmap_np = softmax(outputs["heatmap"].detach(),
dim=1).cpu().numpy()
heatmap_np = heatmap_np.transpose(0, 2, 3, 1)[:, :, :, 1:]
else:
heatmap_np = torch.sigmoid(outputs["heatmap"].detach())
heatmap_np = heatmap_np.cpu().numpy().transpose(0, 2, 3, 1)
heatmap_gt_np = heatmap.cpu().numpy().transpose(0, 2, 3, 1)
valid_mask_np = valid_mask.cpu().numpy().transpose(0, 2, 3, 1)
# Evaluate metric results
if compute_descriptors:
metric_func.evaluate(
junc_np["junc_pred"], junc_np["junc_pred_nms"],
junc_map_np, heatmap_np, heatmap_gt_np, valid_mask_np,
line_points, line_points2, outputs["descriptors"],
outputs2["descriptors"], line_indices)
else:
metric_func.evaluate(
junc_np["junc_pred"], junc_np["junc_pred_nms"],
junc_map_np, heatmap_np, heatmap_gt_np, valid_mask_np)
# Update average meter
junc_loss = losses["junc_loss"].item()
heatmap_loss = losses["heatmap_loss"].item()
loss_dict = {
"junc_loss": junc_loss,
"heatmap_loss": heatmap_loss,
"total_loss": total_loss.item()}
if compute_descriptors:
descriptor_loss = losses["descriptor_loss"].item()
loss_dict["descriptor_loss"] = losses["descriptor_loss"].item()
average_meter.update(metric_func, loss_dict, num_samples=junc_map.shape[0])
# Display the progress
if (idx % model_cfg["disp_freq"]) == 0:
results = metric_func.metric_results
average = average_meter.average()
# Get gpu memory usage in GB
gpu_mem_usage = torch.cuda.max_memory_allocated() / (1024 ** 3)
if compute_descriptors:
print("Epoch [%d / %d] Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f), descriptor_loss=%.4f (%.4f), gpu_mem=%.4fGB"
% (epoch, model_cfg["epochs"], idx, len(train_loader),
total_loss.item(), average["total_loss"], junc_loss,
average["junc_loss"], heatmap_loss,
average["heatmap_loss"], descriptor_loss,
average["descriptor_loss"], gpu_mem_usage))
else:
print("Epoch [%d / %d] Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f), gpu_mem=%.4fGB"
% (epoch, model_cfg["epochs"], idx, len(train_loader),
total_loss.item(), average["total_loss"],
junc_loss, average["junc_loss"], heatmap_loss,
average["heatmap_loss"], gpu_mem_usage))
print("\t Junction precision=%.4f (%.4f) / recall=%.4f (%.4f)"
% (results["junc_precision"], average["junc_precision"],
results["junc_recall"], average["junc_recall"]))
print("\t Junction nms precision=%.4f (%.4f) / recall=%.4f (%.4f)"
% (results["junc_precision_nms"],
average["junc_precision_nms"],
results["junc_recall_nms"], average["junc_recall_nms"]))
print("\t Heatmap precision=%.4f (%.4f) / recall=%.4f (%.4f)"
%(results["heatmap_precision"],
average["heatmap_precision"],
results["heatmap_recall"], average["heatmap_recall"]))
if compute_descriptors:
print("\t Descriptors matching score=%.4f (%.4f)"
%(results["matching_score"], average["matching_score"]))
# Record summaries
if (idx % model_cfg["summary_freq"]) == 0:
results = metric_func.metric_results
average = average_meter.average()
# Add the shared losses
scalar_summaries = {
"junc_loss": junc_loss,
"heatmap_loss": heatmap_loss,
"total_loss": total_loss.detach().cpu().numpy(),
"metrics": results,
"average": average}
# Add descriptor terms
if compute_descriptors:
scalar_summaries["descriptor_loss"] = descriptor_loss
scalar_summaries["w_desc"] = losses["w_desc"]
# Add weighting terms (even for static terms)
scalar_summaries["w_junc"] = losses["w_junc"]
scalar_summaries["w_heatmap"] = losses["w_heatmap"]
scalar_summaries["reg_loss"] = losses["reg_loss"].item()
num_images = 3
junc_pred_binary = (junc_np["junc_pred"][:num_images, ...]
> model_cfg["detection_thresh"])
junc_pred_nms_binary = (junc_np["junc_pred_nms"][:num_images, ...]
> model_cfg["detection_thresh"])
image_summaries = {
"image": input_images.cpu().numpy()[:num_images, ...],
"valid_mask": valid_mask_np[:num_images, ...],
"junc_map_pred": junc_pred_binary,
"junc_map_pred_nms": junc_pred_nms_binary,
"junc_map_gt": junc_map_np[:num_images, ...],
"junc_prob_map": junc_np["junc_prob"][:num_images, ...],
"heatmap_pred": heatmap_np[:num_images, ...],
"heatmap_gt": heatmap_gt_np[:num_images, ...]}
# Record the training summary
record_train_summaries(
writer, global_step, scalars=scalar_summaries,
images=image_summaries)
def validate(model, model_cfg, loss_func, metric_func, val_loader, writer, epoch):
""" Validation. """
# Switch the model to eval mode
model.eval()
# Initialize the average meter
compute_descriptors = loss_func.compute_descriptors
if compute_descriptors:
average_meter = AverageMeter(is_training=True, desc_metric_lst='all')
else:
average_meter = AverageMeter(is_training=True)
# The validation loop
for idx, data in enumerate(val_loader):
if compute_descriptors:
junc_map = data["ref_junction_map"].cuda()
junc_map2 = data["target_junction_map"].cuda()
heatmap = data["ref_heatmap"].cuda()
heatmap2 = data["target_heatmap"].cuda()
line_points = data["ref_line_points"].cuda()
line_points2 = data["target_line_points"].cuda()
line_indices = data["ref_line_indices"].cuda()
valid_mask = data["ref_valid_mask"].cuda()
valid_mask2 = data["target_valid_mask"].cuda()
input_images = data["ref_image"].cuda()
input_images2 = data["target_image"].cuda()
# Run the forward pass
with torch.no_grad():
outputs = model(input_images)
outputs2 = model(input_images2)
# Compute losses
losses = loss_func.forward_descriptors(
outputs["junctions"], outputs2["junctions"],
junc_map, junc_map2, outputs["heatmap"],
outputs2["heatmap"], heatmap, heatmap2, line_points,
line_points2, line_indices, outputs['descriptors'],
outputs2['descriptors'], epoch, valid_mask, valid_mask2)
else:
junc_map = data["junction_map"].cuda()
heatmap = data["heatmap"].cuda()
valid_mask = data["valid_mask"].cuda()
input_images = data["image"].cuda()
# Run the forward pass
with torch.no_grad():
outputs = model(input_images)
# Compute losses
losses = loss_func(
outputs["junctions"], junc_map,
outputs["heatmap"], heatmap,
valid_mask)
total_loss = losses["total_loss"]
############## Measure the metric error #########################
junc_np = convert_junc_predictions(
outputs["junctions"], model_cfg["grid_size"],
model_cfg["detection_thresh"], 300)
junc_map_np = junc_map.cpu().numpy().transpose(0, 2, 3, 1)
# Always fetch only one channel (compatible with L1, L2, and CE)
if outputs["heatmap"].shape[1] == 2:
heatmap_np = softmax(outputs["heatmap"].detach(),
dim=1).cpu().numpy().transpose(0, 2, 3, 1)
heatmap_np = heatmap_np[:, :, :, 1:]
else:
heatmap_np = torch.sigmoid(outputs["heatmap"].detach())
heatmap_np = heatmap_np.cpu().numpy().transpose(0, 2, 3, 1)
heatmap_gt_np = heatmap.cpu().numpy().transpose(0, 2, 3, 1)
valid_mask_np = valid_mask.cpu().numpy().transpose(0, 2, 3, 1)
# Evaluate metric results
if compute_descriptors:
metric_func.evaluate(
junc_np["junc_pred"], junc_np["junc_pred_nms"],
junc_map_np, heatmap_np, heatmap_gt_np, valid_mask_np,
line_points, line_points2, outputs["descriptors"],
outputs2["descriptors"], line_indices)
else:
metric_func.evaluate(
junc_np["junc_pred"], junc_np["junc_pred_nms"], junc_map_np,
heatmap_np, heatmap_gt_np, valid_mask_np)
# Update average meter
junc_loss = losses["junc_loss"].item()
heatmap_loss = losses["heatmap_loss"].item()
loss_dict = {
"junc_loss": junc_loss,
"heatmap_loss": heatmap_loss,
"total_loss": total_loss.item()}
if compute_descriptors:
descriptor_loss = losses["descriptor_loss"].item()
loss_dict["descriptor_loss"] = losses["descriptor_loss"].item()
average_meter.update(metric_func, loss_dict, num_samples=junc_map.shape[0])
# Display the progress
if (idx % model_cfg["disp_freq"]) == 0:
results = metric_func.metric_results
average = average_meter.average()
if compute_descriptors:
print("Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f), descriptor_loss=%.4f (%.4f)"
% (idx, len(val_loader),
total_loss.item(), average["total_loss"],
junc_loss, average["junc_loss"],
heatmap_loss, average["heatmap_loss"],
descriptor_loss, average["descriptor_loss"]))
else:
print("Iter [%d / %d] loss=%.4f (%.4f), junc_loss=%.4f (%.4f), heatmap_loss=%.4f (%.4f)"
% (idx, len(val_loader),
total_loss.item(), average["total_loss"],
junc_loss, average["junc_loss"],
heatmap_loss, average["heatmap_loss"]))
print("\t Junction precision=%.4f (%.4f) / recall=%.4f (%.4f)"
% (results["junc_precision"], average["junc_precision"],
results["junc_recall"], average["junc_recall"]))
print("\t Junction nms precision=%.4f (%.4f) / recall=%.4f (%.4f)"
% (results["junc_precision_nms"],
average["junc_precision_nms"],
results["junc_recall_nms"], average["junc_recall_nms"]))
print("\t Heatmap precision=%.4f (%.4f) / recall=%.4f (%.4f)"
% (results["heatmap_precision"],
average["heatmap_precision"],
results["heatmap_recall"], average["heatmap_recall"]))
if compute_descriptors:
print("\t Descriptors matching score=%.4f (%.4f)"
%(results["matching_score"], average["matching_score"]))
# Record summaries
average = average_meter.average()
scalar_summaries = {"average": average}
# Record the training summary
record_test_summaries(writer, epoch, scalar_summaries)
def convert_junc_predictions(predictions, grid_size,
detect_thresh=1/65, topk=300):
""" Convert torch predictions to numpy arrays for evaluation. """
# Convert to probability outputs first
junc_prob = softmax(predictions.detach(), dim=1).cpu()
junc_pred = junc_prob[:, :-1, :, :]
junc_prob_np = junc_prob.numpy().transpose(0, 2, 3, 1)[:, :, :, :-1]
junc_prob_np = np.sum(junc_prob_np, axis=-1)
junc_pred_np = pixel_shuffle(
junc_pred, grid_size).cpu().numpy().transpose(0, 2, 3, 1)
junc_pred_np_nms = super_nms(junc_pred_np, grid_size, detect_thresh, topk)
junc_pred_np = junc_pred_np.squeeze(-1)
return {"junc_pred": junc_pred_np, "junc_pred_nms": junc_pred_np_nms,
"junc_prob": junc_prob_np}
def record_train_summaries(writer, global_step, scalars, images):
""" Record training summaries. """
# Record the scalar summaries
results = scalars["metrics"]
average = scalars["average"]
# GPU memory part
# Get gpu memory usage in GB
gpu_mem_usage = torch.cuda.max_memory_allocated() / (1024 ** 3)
writer.add_scalar("GPU/GPU_memory_usage", gpu_mem_usage, global_step)
# Loss part
writer.add_scalar("Train_loss/junc_loss", scalars["junc_loss"],
global_step)
writer.add_scalar("Train_loss/heatmap_loss", scalars["heatmap_loss"],
global_step)
writer.add_scalar("Train_loss/total_loss", scalars["total_loss"],
global_step)
# Add regularization loss
if "reg_loss" in scalars.keys():
writer.add_scalar("Train_loss/reg_loss", scalars["reg_loss"],
global_step)
# Add descriptor loss
if "descriptor_loss" in scalars.keys():
key = "descriptor_loss"
writer.add_scalar("Train_loss/%s"%(key), scalars[key], global_step)
writer.add_scalar("Train_loss_average/%s"%(key), average[key],
global_step)
# Record weighting
for key in scalars.keys():
if "w_" in key:
writer.add_scalar("Train_weight/%s"%(key), scalars[key],
global_step)
# Smoothed loss
writer.add_scalar("Train_loss_average/junc_loss", average["junc_loss"],
global_step)
writer.add_scalar("Train_loss_average/heatmap_loss",
average["heatmap_loss"], global_step)
writer.add_scalar("Train_loss_average/total_loss", average["total_loss"],
global_step)
# Add smoothed descriptor loss
if "descriptor_loss" in average.keys():
writer.add_scalar("Train_loss_average/descriptor_loss",
average["descriptor_loss"], global_step)
# Metrics part
writer.add_scalar("Train_metrics/junc_precision",
results["junc_precision"], global_step)
writer.add_scalar("Train_metrics/junc_precision_nms",
results["junc_precision_nms"], global_step)
writer.add_scalar("Train_metrics/junc_recall",
results["junc_recall"], global_step)
writer.add_scalar("Train_metrics/junc_recall_nms",
results["junc_recall_nms"], global_step)
writer.add_scalar("Train_metrics/heatmap_precision",
results["heatmap_precision"], global_step)
writer.add_scalar("Train_metrics/heatmap_recall",
results["heatmap_recall"], global_step)
# Add descriptor metric
if "matching_score" in results.keys():
writer.add_scalar("Train_metrics/matching_score",
results["matching_score"], global_step)
# Average part
writer.add_scalar("Train_metrics_average/junc_precision",
average["junc_precision"], global_step)
writer.add_scalar("Train_metrics_average/junc_precision_nms",
average["junc_precision_nms"], global_step)
writer.add_scalar("Train_metrics_average/junc_recall",
average["junc_recall"], global_step)
writer.add_scalar("Train_metrics_average/junc_recall_nms",
average["junc_recall_nms"], global_step)
writer.add_scalar("Train_metrics_average/heatmap_precision",
average["heatmap_precision"], global_step)
writer.add_scalar("Train_metrics_average/heatmap_recall",
average["heatmap_recall"], global_step)
# Add smoothed descriptor metric
if "matching_score" in average.keys():
writer.add_scalar("Train_metrics_average/matching_score",
average["matching_score"], global_step)
# Record the image summary
# Image part
image_tensor = convert_image(images["image"], 1)
valid_masks = convert_image(images["valid_mask"], -1)
writer.add_images("Train/images", image_tensor, global_step,
dataformats="NCHW")
writer.add_images("Train/valid_map", valid_masks, global_step,
dataformats="NHWC")
# Heatmap part
writer.add_images("Train/heatmap_gt",
convert_image(images["heatmap_gt"], -1), global_step,
dataformats="NHWC")
writer.add_images("Train/heatmap_pred",
convert_image(images["heatmap_pred"], -1), global_step,
dataformats="NHWC")
# Junction prediction part
junc_plots = plot_junction_detection(
image_tensor, images["junc_map_pred"],
images["junc_map_pred_nms"], images["junc_map_gt"])
writer.add_images("Train/junc_gt", junc_plots["junc_gt_plot"] / 255.,
global_step, dataformats="NHWC")
writer.add_images("Train/junc_pred", junc_plots["junc_pred_plot"] / 255.,
global_step, dataformats="NHWC")
writer.add_images("Train/junc_pred_nms",
junc_plots["junc_pred_nms_plot"] / 255., global_step,
dataformats="NHWC")
writer.add_images(
"Train/junc_prob_map",
convert_image(images["junc_prob_map"][..., None], axis=-1),
global_step, dataformats="NHWC")
def record_test_summaries(writer, epoch, scalars):
""" Record testing summaries. """
average = scalars["average"]
# Average loss
writer.add_scalar("Val_loss/junc_loss", average["junc_loss"], epoch)
writer.add_scalar("Val_loss/heatmap_loss", average["heatmap_loss"], epoch)
writer.add_scalar("Val_loss/total_loss", average["total_loss"], epoch)
# Add descriptor loss
if "descriptor_loss" in average.keys():
key = "descriptor_loss"
writer.add_scalar("Val_loss/%s"%(key), average[key], epoch)
# Average metrics
writer.add_scalar("Val_metrics/junc_precision", average["junc_precision"],
epoch)
writer.add_scalar("Val_metrics/junc_precision_nms",
average["junc_precision_nms"], epoch)
writer.add_scalar("Val_metrics/junc_recall",
average["junc_recall"], epoch)
writer.add_scalar("Val_metrics/junc_recall_nms",
average["junc_recall_nms"], epoch)
writer.add_scalar("Val_metrics/heatmap_precision",
average["heatmap_precision"], epoch)
writer.add_scalar("Val_metrics/heatmap_recall",
average["heatmap_recall"], epoch)
# Add descriptor metric
if "matching_score" in average.keys():
writer.add_scalar("Val_metrics/matching_score",
average["matching_score"], epoch)
def plot_junction_detection(image_tensor, junc_pred_tensor,
junc_pred_nms_tensor, junc_gt_tensor):
""" Plot the junction points on images. """
# Get the batch_size
batch_size = image_tensor.shape[0]
# Process through batch dimension
junc_pred_lst = []
junc_pred_nms_lst = []
junc_gt_lst = []
for i in range(batch_size):
# Convert image to 255 uint8
image = (image_tensor[i, :, :, :]
* 255.).astype(np.uint8).transpose(1,2,0)
# Plot groundtruth onto image
junc_gt = junc_gt_tensor[i, ...]
coord_gt = np.where(junc_gt.squeeze() > 0)
points_gt = np.concatenate((coord_gt[0][..., None],
coord_gt[1][..., None]),
axis=1)
plot_gt = image.copy()
for id in range(points_gt.shape[0]):
cv2.circle(plot_gt, tuple(np.flip(points_gt[id, :])), 3,
color=(255, 0, 0), thickness=2)
junc_gt_lst.append(plot_gt[None, ...])
# Plot junc_pred
junc_pred = junc_pred_tensor[i, ...]
coord_pred = np.where(junc_pred > 0)
points_pred = np.concatenate((coord_pred[0][..., None],
coord_pred[1][..., None]),
axis=1)
plot_pred = image.copy()
for id in range(points_pred.shape[0]):
cv2.circle(plot_pred, tuple(np.flip(points_pred[id, :])), 3,
color=(0, 255, 0), thickness=2)
junc_pred_lst.append(plot_pred[None, ...])
# Plot junc_pred_nms
junc_pred_nms = junc_pred_nms_tensor[i, ...]
coord_pred_nms = np.where(junc_pred_nms > 0)
points_pred_nms = np.concatenate((coord_pred_nms[0][..., None],
coord_pred_nms[1][..., None]),
axis=1)
plot_pred_nms = image.copy()
for id in range(points_pred_nms.shape[0]):
cv2.circle(plot_pred_nms, tuple(np.flip(points_pred_nms[id, :])),
3, color=(0, 255, 0), thickness=2)
junc_pred_nms_lst.append(plot_pred_nms[None, ...])
return {"junc_gt_plot": np.concatenate(junc_gt_lst, axis=0),
"junc_pred_plot": np.concatenate(junc_pred_lst, axis=0),
"junc_pred_nms_plot": np.concatenate(junc_pred_nms_lst, axis=0)}
|