File size: 6,498 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
import cv2
import numpy as np
from collections import OrderedDict
from loguru import logger
from kornia.geometry.epipolar import numeric
from kornia.geometry.conversions import convert_points_to_homogeneous


# --- METRICS ---

def relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0):
    # angle error between 2 vectors
    t_gt = T_0to1[:3, 3]
    n = np.linalg.norm(t) * np.linalg.norm(t_gt)
    t_err = np.rad2deg(np.arccos(np.clip(np.dot(t, t_gt) / n, -1.0, 1.0)))
    t_err = np.minimum(t_err, 180 - t_err)  # handle E ambiguity
    if np.linalg.norm(t_gt) < ignore_gt_t_thr:  # pure rotation is challenging
        t_err = 0

    # angle error between 2 rotation matrices
    R_gt = T_0to1[:3, :3]
    cos = (np.trace(np.dot(R.T, R_gt)) - 1) / 2
    cos = np.clip(cos, -1., 1.)  # handle numercial errors
    R_err = np.rad2deg(np.abs(np.arccos(cos)))

    return t_err, R_err


def symmetric_epipolar_distance(pts0, pts1, E, K0, K1):
    """Squared symmetric epipolar distance.
    This can be seen as a biased estimation of the reprojection error.
    Args:
        pts0 (torch.Tensor): [N, 2]
        E (torch.Tensor): [3, 3]
    """
    pts0 = (pts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
    pts1 = (pts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
    pts0 = convert_points_to_homogeneous(pts0)
    pts1 = convert_points_to_homogeneous(pts1)

    Ep0 = pts0 @ E.T  # [N, 3]
    p1Ep0 = torch.sum(pts1 * Ep0, -1)  # [N,]
    Etp1 = pts1 @ E  # [N, 3]

    d = p1Ep0**2 * (1.0 / (Ep0[:, 0]**2 + Ep0[:, 1]**2) + 1.0 / (Etp1[:, 0]**2 + Etp1[:, 1]**2))  # N
    return d


def compute_symmetrical_epipolar_errors(data):
    """ 
    Update:
        data (dict):{"epi_errs": [M]}
    """
    Tx = numeric.cross_product_matrix(data['T_0to1'][:, :3, 3])
    E_mat = Tx @ data['T_0to1'][:, :3, :3]

    m_bids = data['m_bids']
    pts0 = data['mkpts0_f']
    pts1 = data['mkpts1_f']

    epi_errs = []
    for bs in range(Tx.size(0)):
        mask = m_bids == bs
        epi_errs.append(
            symmetric_epipolar_distance(pts0[mask], pts1[mask], E_mat[bs], data['K0'][bs], data['K1'][bs]))
    epi_errs = torch.cat(epi_errs, dim=0)

    data.update({'epi_errs': epi_errs})


def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999):
    if len(kpts0) < 5:
        return None
    # normalize keypoints
    kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
    kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]

    # normalize ransac threshold
    ransac_thr = thresh / np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]])

    # compute pose with cv2
    E, mask = cv2.findEssentialMat(
        kpts0, kpts1, np.eye(3), threshold=ransac_thr, prob=conf, method=cv2.RANSAC)
    if E is None:
        print("\nE is None while trying to recover pose.\n")
        return None

    # recover pose from E
    best_num_inliers = 0
    ret = None
    for _E in np.split(E, len(E) / 3):
        n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
        if n > best_num_inliers:
            ret = (R, t[:, 0], mask.ravel() > 0)
            best_num_inliers = n

    return ret


def compute_pose_errors(data, config=None, ransac_thr=0.5, ransac_conf=0.99999):
    """ 
    Update:
        data (dict):{
            "R_errs" List[float]: [N]
            "t_errs" List[float]: [N]
            "inliers" List[np.ndarray]: [N]
        }
    """
    pixel_thr = config.TRAINER.RANSAC_PIXEL_THR if config is not None else ransac_thr  # 0.5
    conf = config.TRAINER.RANSAC_CONF if config is not None else ransac_conf  # 0.99999
    data.update({'R_errs': [], 't_errs': [], 'inliers': []})

    m_bids = data['m_bids'].cpu().numpy()
    pts0 = data['mkpts0_f'].cpu().numpy()
    pts1 = data['mkpts1_f'].cpu().numpy()
    K0 = data['K0'].cpu().numpy()
    K1 = data['K1'].cpu().numpy()
    T_0to1 = data['T_0to1'].cpu().numpy()

    for bs in range(K0.shape[0]):
        mask = m_bids == bs
        ret = estimate_pose(pts0[mask], pts1[mask], K0[bs], K1[bs], pixel_thr, conf=conf)

        if ret is None:
            data['R_errs'].append(np.inf)
            data['t_errs'].append(np.inf)
            data['inliers'].append(np.array([]).astype(np.bool))
        else:
            R, t, inliers = ret
            t_err, R_err = relative_pose_error(T_0to1[bs], R, t, ignore_gt_t_thr=0.0)
            data['R_errs'].append(R_err)
            data['t_errs'].append(t_err)
            data['inliers'].append(inliers)


# --- METRIC AGGREGATION ---

def error_auc(errors, thresholds):
    """
    Args:
        errors (list): [N,]
        thresholds (list)
    """
    errors = [0] + sorted(list(errors))
    recall = list(np.linspace(0, 1, len(errors)))

    aucs = []
    thresholds = [5, 10, 20]
    for thr in thresholds:
        last_index = np.searchsorted(errors, thr)
        y = recall[:last_index] + [recall[last_index-1]]
        x = errors[:last_index] + [thr]
        aucs.append(np.trapz(y, x) / thr)

    return {f'auc@{t}': auc for t, auc in zip(thresholds, aucs)}


def epidist_prec(errors, thresholds, ret_dict=False):
    precs = []
    for thr in thresholds:
        prec_ = []
        for errs in errors:
            correct_mask = errs < thr
            prec_.append(np.mean(correct_mask) if len(correct_mask) > 0 else 0)
        precs.append(np.mean(prec_) if len(prec_) > 0 else 0)
    if ret_dict:
        return {f'prec@{t:.0e}': prec for t, prec in zip(thresholds, precs)}
    else:
        return precs


def aggregate_metrics(metrics, epi_err_thr=5e-4):
    """ Aggregate metrics for the whole dataset:
    (This method should be called once per dataset)
    1. AUC of the pose error (angular) at the threshold [5, 10, 20]
    2. Mean matching precision at the threshold 5e-4(ScanNet), 1e-4(MegaDepth)
    """
    # filter duplicates
    unq_ids = OrderedDict((iden, id) for id, iden in enumerate(metrics['identifiers']))
    unq_ids = list(unq_ids.values())
    logger.info(f'Aggregating metrics over {len(unq_ids)} unique items...')

    # pose auc
    angular_thresholds = [5, 10, 20]
    pose_errors = np.max(np.stack([metrics['R_errs'], metrics['t_errs']]), axis=0)[unq_ids]
    aucs = error_auc(pose_errors, angular_thresholds)  # (auc@5, auc@10, auc@20)

    # matching precision
    dist_thresholds = [epi_err_thr]
    precs = epidist_prec(np.array(metrics['epi_errs'], dtype=object)[unq_ids], dist_thresholds, True)  # (prec@err_thr)

    return {**aucs, **precs}