File size: 5,148 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import math
import argparse
import pprint
from distutils.util import strtobool
from pathlib import Path
from loguru import logger as loguru_logger

import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.plugins import DDPPlugin

from src.config.default import get_cfg_defaults
from src.utils.misc import get_rank_zero_only_logger, setup_gpus
from src.utils.profiler import build_profiler
from src.lightning_trainer.data import MultiSceneDataModule
from src.lightning_trainer.trainer import PL_Trainer

loguru_logger = get_rank_zero_only_logger(loguru_logger)


def parse_args():
    # init a costum parser which will be added into pl.Trainer parser
    # check documentation: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-flags
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        'data_cfg_path', type=str, help='data config path')
    parser.add_argument(
        'main_cfg_path', type=str, help='main config path')
    parser.add_argument(
        '--exp_name', type=str, default='default_exp_name')
    parser.add_argument(
        '--batch_size', type=int, default=4, help='batch_size per gpu')
    parser.add_argument(
        '--num_workers', type=int, default=4)
    parser.add_argument(
        '--pin_memory', type=lambda x: bool(strtobool(x)),
        nargs='?', default=True, help='whether loading data to pinned memory or not')
    parser.add_argument(
        '--ckpt_path', type=str, default=None,
        help='pretrained checkpoint path, helpful for using a pre-trained coarse-only LoFTR')
    parser.add_argument(
        '--disable_ckpt', action='store_true',
        help='disable checkpoint saving (useful for debugging).')
    parser.add_argument(
        '--profiler_name', type=str, default=None,
        help='options: [inference, pytorch], or leave it unset')
    parser.add_argument(
        '--parallel_load_data', action='store_true',
        help='load datasets in with multiple processes.')

    parser = pl.Trainer.add_argparse_args(parser)
    return parser.parse_args()


def main():
    # parse arguments
    args = parse_args()
    rank_zero_only(pprint.pprint)(vars(args))

    # init default-cfg and merge it with the main- and data-cfg
    config = get_cfg_defaults()
    config.merge_from_file(args.main_cfg_path)
    config.merge_from_file(args.data_cfg_path)
    pl.seed_everything(config.TRAINER.SEED)  # reproducibility
    # TODO: Use different seeds for each dataloader workers
    # This is needed for data augmentation
    
    # scale lr and warmup-step automatically
    args.gpus = _n_gpus = setup_gpus(args.gpus)
    config.TRAINER.WORLD_SIZE = _n_gpus * args.num_nodes
    config.TRAINER.TRUE_BATCH_SIZE = config.TRAINER.WORLD_SIZE * args.batch_size
    _scaling = config.TRAINER.TRUE_BATCH_SIZE / config.TRAINER.CANONICAL_BS
    config.TRAINER.SCALING = _scaling
    config.TRAINER.TRUE_LR = config.TRAINER.CANONICAL_LR * _scaling
    config.TRAINER.WARMUP_STEP = math.floor(config.TRAINER.WARMUP_STEP / _scaling)
    
    # lightning module
    profiler = build_profiler(args.profiler_name)
    model = PL_Trainer(config, pretrained_ckpt=args.ckpt_path, profiler=profiler)
    loguru_logger.info(f"Model LightningModule initialized!")
    
    # lightning data
    data_module = MultiSceneDataModule(args, config)
    loguru_logger.info(f"Model DataModule initialized!")
    
    # TensorBoard Logger
    logger = TensorBoardLogger(save_dir='logs/tb_logs', name=args.exp_name, default_hp_metric=False)
    ckpt_dir = Path(logger.log_dir) / 'checkpoints'
    
    # Callbacks
    # TODO: update ModelCheckpoint to monitor multiple metrics
    ckpt_callback = ModelCheckpoint(monitor='auc@10', verbose=True, save_top_k=5, mode='max',
                                    save_last=True,
                                    dirpath=str(ckpt_dir),
                                    filename='{epoch}-{auc@5:.3f}-{auc@10:.3f}-{auc@20:.3f}')
    lr_monitor = LearningRateMonitor(logging_interval='step')
    callbacks = [lr_monitor]
    if not args.disable_ckpt:
        callbacks.append(ckpt_callback)
    
    # Lightning Trainer
    trainer = pl.Trainer.from_argparse_args(
        args,
        plugins=DDPPlugin(find_unused_parameters=False,
                          num_nodes=args.num_nodes,
                          sync_batchnorm=config.TRAINER.WORLD_SIZE > 0),
        gradient_clip_val=config.TRAINER.GRADIENT_CLIPPING,
        callbacks=callbacks,
        logger=logger,
        sync_batchnorm=config.TRAINER.WORLD_SIZE > 0,
        replace_sampler_ddp=False,  # use custom sampler
        reload_dataloaders_every_epoch=False,  # avoid repeated samples!
        weights_summary='full',
        profiler=profiler)
    loguru_logger.info(f"Trainer initialized!")
    loguru_logger.info(f"Start training!")
    trainer.fit(model, datamodule=data_module)


if __name__ == '__main__':
    main()