Spaces:
Running
Running
File size: 7,318 Bytes
a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import argparse
import imagesize
import numpy as np
import os
parser = argparse.ArgumentParser(description='MegaDepth preprocessing script')
parser.add_argument(
'--base_path', type=str, required=True,
help='path to MegaDepth'
)
parser.add_argument(
'--scene_id', type=str, required=True,
help='scene ID'
)
parser.add_argument(
'--output_path', type=str, required=True,
help='path to the output directory'
)
args = parser.parse_args()
base_path = args.base_path
# Remove the trailing / if need be.
if base_path[-1] in ['/', '\\']:
base_path = base_path[: - 1]
scene_id = args.scene_id
base_depth_path = os.path.join(
base_path, 'phoenix/S6/zl548/MegaDepth_v1'
)
base_undistorted_sfm_path = os.path.join(
base_path, 'Undistorted_SfM'
)
undistorted_sparse_path = os.path.join(
base_undistorted_sfm_path, scene_id, 'sparse-txt'
)
if not os.path.exists(undistorted_sparse_path):
exit()
depths_path = os.path.join(
base_depth_path, scene_id, 'dense0', 'depths'
)
if not os.path.exists(depths_path):
exit()
images_path = os.path.join(
base_undistorted_sfm_path, scene_id, 'images'
)
if not os.path.exists(images_path):
exit()
# Process cameras.txt
with open(os.path.join(undistorted_sparse_path, 'cameras.txt'), 'r') as f:
raw = f.readlines()[3 :] # skip the header
camera_intrinsics = {}
for camera in raw:
camera = camera.split(' ')
camera_intrinsics[int(camera[0])] = [float(elem) for elem in camera[2 :]]
# Process points3D.txt
with open(os.path.join(undistorted_sparse_path, 'points3D.txt'), 'r') as f:
raw = f.readlines()[3 :] # skip the header
points3D = {}
for point3D in raw:
point3D = point3D.split(' ')
points3D[int(point3D[0])] = np.array([
float(point3D[1]), float(point3D[2]), float(point3D[3])
])
# Process images.txt
with open(os.path.join(undistorted_sparse_path, 'images.txt'), 'r') as f:
raw = f.readlines()[4 :] # skip the header
image_id_to_idx = {}
image_names = []
raw_pose = []
camera = []
points3D_id_to_2D = []
n_points3D = []
for idx, (image, points) in enumerate(zip(raw[:: 2], raw[1 :: 2])):
image = image.split(' ')
points = points.split(' ')
image_id_to_idx[int(image[0])] = idx
image_name = image[-1].strip('\n')
image_names.append(image_name)
raw_pose.append([float(elem) for elem in image[1 : -2]])
camera.append(int(image[-2]))
current_points3D_id_to_2D = {}
for x, y, point3D_id in zip(points[:: 3], points[1 :: 3], points[2 :: 3]):
if int(point3D_id) == -1:
continue
current_points3D_id_to_2D[int(point3D_id)] = [float(x), float(y)]
points3D_id_to_2D.append(current_points3D_id_to_2D)
n_points3D.append(len(current_points3D_id_to_2D))
n_images = len(image_names)
# Image and depthmaps paths
image_paths = []
depth_paths = []
for image_name in image_names:
image_path = os.path.join(images_path, image_name)
# Path to the depth file
depth_path = os.path.join(
depths_path, '%s.h5' % os.path.splitext(image_name)[0]
)
if os.path.exists(depth_path):
# Check if depth map or background / foreground mask
file_size = os.stat(depth_path).st_size
# Rough estimate - 75KB might work as well
if file_size < 100 * 1024:
depth_paths.append(None)
image_paths.append(None)
else:
depth_paths.append(depth_path[len(base_path) + 1 :])
image_paths.append(image_path[len(base_path) + 1 :])
else:
depth_paths.append(None)
image_paths.append(None)
# Camera configuration
intrinsics = []
poses = []
principal_axis = []
points3D_id_to_ndepth = []
for idx, image_name in enumerate(image_names):
if image_paths[idx] is None:
intrinsics.append(None)
poses.append(None)
principal_axis.append([0, 0, 0])
points3D_id_to_ndepth.append({})
continue
image_intrinsics = camera_intrinsics[camera[idx]]
K = np.zeros([3, 3])
K[0, 0] = image_intrinsics[2]
K[0, 2] = image_intrinsics[4]
K[1, 1] = image_intrinsics[3]
K[1, 2] = image_intrinsics[5]
K[2, 2] = 1
intrinsics.append(K)
image_pose = raw_pose[idx]
qvec = image_pose[: 4]
qvec = qvec / np.linalg.norm(qvec)
w, x, y, z = qvec
R = np.array([
[
1 - 2 * y * y - 2 * z * z,
2 * x * y - 2 * z * w,
2 * x * z + 2 * y * w
],
[
2 * x * y + 2 * z * w,
1 - 2 * x * x - 2 * z * z,
2 * y * z - 2 * x * w
],
[
2 * x * z - 2 * y * w,
2 * y * z + 2 * x * w,
1 - 2 * x * x - 2 * y * y
]
])
principal_axis.append(R[2, :])
t = image_pose[4 : 7]
# World-to-Camera pose
current_pose = np.zeros([4, 4])
current_pose[: 3, : 3] = R
current_pose[: 3, 3] = t
current_pose[3, 3] = 1
# Camera-to-World pose
# pose = np.zeros([4, 4])
# pose[: 3, : 3] = np.transpose(R)
# pose[: 3, 3] = -np.matmul(np.transpose(R), t)
# pose[3, 3] = 1
poses.append(current_pose)
current_points3D_id_to_ndepth = {}
for point3D_id in points3D_id_to_2D[idx].keys():
p3d = points3D[point3D_id]
current_points3D_id_to_ndepth[point3D_id] = (np.dot(R[2, :], p3d) + t[2]) / (.5 * (K[0, 0] + K[1, 1]))
points3D_id_to_ndepth.append(current_points3D_id_to_ndepth)
principal_axis = np.array(principal_axis)
angles = np.rad2deg(np.arccos(
np.clip(
np.dot(principal_axis, np.transpose(principal_axis)),
-1, 1
)
))
# Compute overlap score
overlap_matrix = np.full([n_images, n_images], -1.)
scale_ratio_matrix = np.full([n_images, n_images], -1.)
for idx1 in range(n_images):
if image_paths[idx1] is None or depth_paths[idx1] is None:
continue
for idx2 in range(idx1 + 1, n_images):
if image_paths[idx2] is None or depth_paths[idx2] is None:
continue
matches = (
points3D_id_to_2D[idx1].keys() &
points3D_id_to_2D[idx2].keys()
)
min_num_points3D = min(
len(points3D_id_to_2D[idx1]), len(points3D_id_to_2D[idx2])
)
overlap_matrix[idx1, idx2] = len(matches) / len(points3D_id_to_2D[idx1]) # min_num_points3D
overlap_matrix[idx2, idx1] = len(matches) / len(points3D_id_to_2D[idx2]) # min_num_points3D
if len(matches) == 0:
continue
points3D_id_to_ndepth1 = points3D_id_to_ndepth[idx1]
points3D_id_to_ndepth2 = points3D_id_to_ndepth[idx2]
nd1 = np.array([points3D_id_to_ndepth1[match] for match in matches])
nd2 = np.array([points3D_id_to_ndepth2[match] for match in matches])
min_scale_ratio = np.min(np.maximum(nd1 / nd2, nd2 / nd1))
scale_ratio_matrix[idx1, idx2] = min_scale_ratio
scale_ratio_matrix[idx2, idx1] = min_scale_ratio
np.savez(
os.path.join(args.output_path, '%s.npz' % scene_id),
image_paths=image_paths,
depth_paths=depth_paths,
intrinsics=intrinsics,
poses=poses,
overlap_matrix=overlap_matrix,
scale_ratio_matrix=scale_ratio_matrix,
angles=angles,
n_points3D=n_points3D,
points3D_id_to_2D=points3D_id_to_2D,
points3D_id_to_ndepth=points3D_id_to_ndepth
)
|