File size: 7,318 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import argparse

import imagesize

import numpy as np

import os

parser = argparse.ArgumentParser(description='MegaDepth preprocessing script')

parser.add_argument(
    '--base_path', type=str, required=True,
    help='path to MegaDepth'
)
parser.add_argument(
    '--scene_id', type=str, required=True,
    help='scene ID'
)

parser.add_argument(
    '--output_path', type=str, required=True,
    help='path to the output directory'
)

args = parser.parse_args()

base_path = args.base_path
# Remove the trailing / if need be.
if base_path[-1] in ['/', '\\']:
    base_path = base_path[: - 1]
scene_id = args.scene_id

base_depth_path = os.path.join(
    base_path, 'phoenix/S6/zl548/MegaDepth_v1'
)
base_undistorted_sfm_path = os.path.join(
    base_path, 'Undistorted_SfM'
)

undistorted_sparse_path = os.path.join(
    base_undistorted_sfm_path, scene_id, 'sparse-txt'
)
if not os.path.exists(undistorted_sparse_path):
    exit()

depths_path = os.path.join(
    base_depth_path, scene_id, 'dense0', 'depths'
)
if not os.path.exists(depths_path):
    exit()

images_path = os.path.join(
    base_undistorted_sfm_path, scene_id, 'images'
)
if not os.path.exists(images_path):
    exit()

# Process cameras.txt
with open(os.path.join(undistorted_sparse_path, 'cameras.txt'), 'r') as f:
    raw = f.readlines()[3 :]  # skip the header

camera_intrinsics = {}
for camera in raw:
    camera = camera.split(' ')
    camera_intrinsics[int(camera[0])] = [float(elem) for elem in camera[2 :]]

# Process points3D.txt
with open(os.path.join(undistorted_sparse_path, 'points3D.txt'), 'r') as f:
    raw = f.readlines()[3 :]  # skip the header

points3D = {}
for point3D in raw:
    point3D = point3D.split(' ')
    points3D[int(point3D[0])] = np.array([
        float(point3D[1]), float(point3D[2]), float(point3D[3])
    ])
    
# Process images.txt
with open(os.path.join(undistorted_sparse_path, 'images.txt'), 'r') as f:
    raw = f.readlines()[4 :]  # skip the header

image_id_to_idx = {}
image_names = []
raw_pose = []
camera = []
points3D_id_to_2D = []
n_points3D = []
for idx, (image, points) in enumerate(zip(raw[:: 2], raw[1 :: 2])):
    image = image.split(' ')
    points = points.split(' ')

    image_id_to_idx[int(image[0])] = idx

    image_name = image[-1].strip('\n')
    image_names.append(image_name)

    raw_pose.append([float(elem) for elem in image[1 : -2]])
    camera.append(int(image[-2]))
    current_points3D_id_to_2D = {}
    for x, y, point3D_id in zip(points[:: 3], points[1 :: 3], points[2 :: 3]):
        if int(point3D_id) == -1:
            continue
        current_points3D_id_to_2D[int(point3D_id)] = [float(x), float(y)]
    points3D_id_to_2D.append(current_points3D_id_to_2D)
    n_points3D.append(len(current_points3D_id_to_2D))
n_images = len(image_names)

# Image and depthmaps paths
image_paths = []
depth_paths = []
for image_name in image_names:
    image_path = os.path.join(images_path, image_name)
   
    # Path to the depth file
    depth_path = os.path.join(
        depths_path, '%s.h5' % os.path.splitext(image_name)[0]
    )
    
    if os.path.exists(depth_path):
        # Check if depth map or background / foreground mask
        file_size = os.stat(depth_path).st_size
        # Rough estimate - 75KB might work as well
        if file_size < 100 * 1024:
            depth_paths.append(None)
            image_paths.append(None)
        else:
            depth_paths.append(depth_path[len(base_path) + 1 :])
            image_paths.append(image_path[len(base_path) + 1 :])
    else:
        depth_paths.append(None)
        image_paths.append(None)

# Camera configuration
intrinsics = []
poses = []
principal_axis = []
points3D_id_to_ndepth = []
for idx, image_name in enumerate(image_names):
    if image_paths[idx] is None:
        intrinsics.append(None)
        poses.append(None)
        principal_axis.append([0, 0, 0])
        points3D_id_to_ndepth.append({})
        continue
    image_intrinsics = camera_intrinsics[camera[idx]]
    K = np.zeros([3, 3])
    K[0, 0] = image_intrinsics[2]
    K[0, 2] = image_intrinsics[4]
    K[1, 1] = image_intrinsics[3]
    K[1, 2] = image_intrinsics[5]
    K[2, 2] = 1
    intrinsics.append(K)

    image_pose = raw_pose[idx]
    qvec = image_pose[: 4]
    qvec = qvec / np.linalg.norm(qvec)
    w, x, y, z = qvec
    R = np.array([
        [
            1 - 2 * y * y - 2 * z * z,
            2 * x * y - 2 * z * w,
            2 * x * z + 2 * y * w
        ],
        [
            2 * x * y + 2 * z * w,
            1 - 2 * x * x - 2 * z * z,
            2 * y * z - 2 * x * w
        ],
        [
            2 * x * z - 2 * y * w,
            2 * y * z + 2 * x * w,
            1 - 2 * x * x - 2 * y * y
        ]
    ])
    principal_axis.append(R[2, :])
    t = image_pose[4 : 7]
    # World-to-Camera pose
    current_pose = np.zeros([4, 4])
    current_pose[: 3, : 3] = R
    current_pose[: 3, 3] = t
    current_pose[3, 3] = 1
    # Camera-to-World pose
    # pose = np.zeros([4, 4])
    # pose[: 3, : 3] = np.transpose(R)
    # pose[: 3, 3] = -np.matmul(np.transpose(R), t)
    # pose[3, 3] = 1
    poses.append(current_pose)
    
    current_points3D_id_to_ndepth = {}
    for point3D_id in points3D_id_to_2D[idx].keys():
        p3d = points3D[point3D_id]
        current_points3D_id_to_ndepth[point3D_id] = (np.dot(R[2, :], p3d) + t[2]) / (.5 * (K[0, 0] + K[1, 1])) 
    points3D_id_to_ndepth.append(current_points3D_id_to_ndepth)
principal_axis = np.array(principal_axis)
angles = np.rad2deg(np.arccos(
    np.clip(
        np.dot(principal_axis, np.transpose(principal_axis)),
        -1, 1
    )
))

# Compute overlap score
overlap_matrix = np.full([n_images, n_images], -1.)
scale_ratio_matrix = np.full([n_images, n_images], -1.)
for idx1 in range(n_images):
    if image_paths[idx1] is None or depth_paths[idx1] is None:
        continue
    for idx2 in range(idx1 + 1, n_images):
        if image_paths[idx2] is None or depth_paths[idx2] is None:
            continue
        matches = (
            points3D_id_to_2D[idx1].keys() &
            points3D_id_to_2D[idx2].keys()
        )
        min_num_points3D = min(
            len(points3D_id_to_2D[idx1]), len(points3D_id_to_2D[idx2])
        )
        overlap_matrix[idx1, idx2] = len(matches) / len(points3D_id_to_2D[idx1])  # min_num_points3D
        overlap_matrix[idx2, idx1] = len(matches) / len(points3D_id_to_2D[idx2])  # min_num_points3D
        if len(matches) == 0:
            continue
        points3D_id_to_ndepth1 = points3D_id_to_ndepth[idx1]
        points3D_id_to_ndepth2 = points3D_id_to_ndepth[idx2]
        nd1 = np.array([points3D_id_to_ndepth1[match] for match in matches])
        nd2 = np.array([points3D_id_to_ndepth2[match] for match in matches])
        min_scale_ratio = np.min(np.maximum(nd1 / nd2, nd2 / nd1))
        scale_ratio_matrix[idx1, idx2] = min_scale_ratio
        scale_ratio_matrix[idx2, idx1] = min_scale_ratio

np.savez(
    os.path.join(args.output_path, '%s.npz' % scene_id),
    image_paths=image_paths,
    depth_paths=depth_paths,
    intrinsics=intrinsics,
    poses=poses,
    overlap_matrix=overlap_matrix,
    scale_ratio_matrix=scale_ratio_matrix,
    angles=angles,
    n_points3D=n_points3D,
    points3D_id_to_2D=points3D_id_to_2D,
    points3D_id_to_ndepth=points3D_id_to_ndepth
)