Spaces:
Running
Running
File size: 5,768 Bytes
a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import image_grid
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class DilationConv3x3(nn.Module):
def __init__(self, in_channels, out_channels):
super(DilationConv3x3, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=2, dilation=2, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class InterestPointModule(nn.Module):
def __init__(self, is_test=False):
super(InterestPointModule, self).__init__()
self.is_test = is_test
self.conv1 = ConvBlock(3, 32)
self.conv2 = ConvBlock(32, 64)
self.conv3 = ConvBlock(64, 128)
self.conv4 = ConvBlock(128, 256)
self.maxpool2x2 = nn.MaxPool2d(2, 2)
# score head
self.score_conv = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.score_norm = nn.BatchNorm2d(256)
self.score_out = nn.Conv2d(256, 3, kernel_size=3, stride=1, padding=1)
self.softmax = nn.Softmax(dim=1)
# location head
self.loc_conv = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False)
self.loc_norm = nn.BatchNorm2d(256)
self.loc_out = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1)
# descriptor out
self.des_conv2 = DilationConv3x3(64, 256)
self.des_conv3 = DilationConv3x3(128, 256)
# cross_head:
self.shift_out = nn.Conv2d(256, 1, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
B, _, H, W = x.shape
x = self.conv1(x)
x = self.maxpool2x2(x)
x2 = self.conv2(x)
x = self.maxpool2x2(x2)
x3 = self.conv3(x)
x = self.maxpool2x2(x3)
x = self.conv4(x)
B, _, Hc, Wc = x.shape
# score head
score_x = self.score_out(self.relu(self.score_norm(self.score_conv(x))))
aware = self.softmax(score_x[:, 0:2, :, :])
score = score_x[:, 2, :, :].unsqueeze(1).sigmoid()
border_mask = torch.ones(B, Hc, Wc)
border_mask[:, 0] = 0
border_mask[:, Hc - 1] = 0
border_mask[:, :, 0] = 0
border_mask[:, :, Wc - 1] = 0
border_mask = border_mask.unsqueeze(1)
score = score * border_mask.to(score.device)
# location head
coord_x = self.relu(self.loc_norm(self.loc_conv(x)))
coord_cell = self.loc_out(coord_x).tanh()
shift_ratio = self.shift_out(coord_x).sigmoid() * 2.0
step = ((H/Hc)-1) / 2.
center_base = image_grid(B, Hc, Wc,
dtype=coord_cell.dtype,
device=coord_cell.device,
ones=False, normalized=False).mul(H/Hc) + step
coord_un = center_base.add(coord_cell.mul(shift_ratio * step))
coord = coord_un.clone()
coord[:, 0] = torch.clamp(coord_un[:, 0], min=0, max=W-1)
coord[:, 1] = torch.clamp(coord_un[:, 1], min=0, max=H-1)
# descriptor block
desc_block = []
desc_block.append(self.des_conv2(x2))
desc_block.append(self.des_conv3(x3))
desc_block.append(aware)
if self.is_test:
coord_norm = coord[:, :2].clone()
coord_norm[:, 0] = (coord_norm[:, 0] / (float(W-1)/2.)) - 1.
coord_norm[:, 1] = (coord_norm[:, 1] / (float(H-1)/2.)) - 1.
coord_norm = coord_norm.permute(0, 2, 3, 1)
desc2 = torch.nn.functional.grid_sample(desc_block[0], coord_norm)
desc3 = torch.nn.functional.grid_sample(desc_block[1], coord_norm)
aware = desc_block[2]
desc = torch.mul(desc2, aware[:, 0, :, :]) + torch.mul(desc3, aware[:, 1, :, :])
desc = desc.div(torch.unsqueeze(torch.norm(desc, p=2, dim=1), 1)) # Divide by norm to normalize.
return score, coord, desc
return score, coord, desc_block
class CorrespondenceModule(nn.Module):
def __init__(self, match_type='dual_softmax'):
super(CorrespondenceModule, self).__init__()
self.match_type = match_type
if self.match_type == 'dual_softmax':
self.temperature = 0.1
else:
raise NotImplementedError()
def forward(self, source_desc, target_desc):
b, c, h, w = source_desc.size()
source_desc = source_desc.div(torch.unsqueeze(torch.norm(source_desc, p=2, dim=1), 1)).view(b, -1, h*w)
target_desc = target_desc.div(torch.unsqueeze(torch.norm(target_desc, p=2, dim=1), 1)).view(b, -1, h*w)
if self.match_type == 'dual_softmax':
sim_mat = torch.einsum("bcm, bcn -> bmn", source_desc, target_desc) / self.temperature
confidence_matrix = F.softmax(sim_mat, 1) * F.softmax(sim_mat, 2)
else:
raise NotImplementedError()
return confidence_matrix |