Spaces:
Running
Running
File size: 18,296 Bytes
9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
import bisect
import numpy as np
import matplotlib.pyplot as plt
import matplotlib, os, cv2
import matplotlib.cm as cm
from PIL import Image
import torch.nn.functional as F
import torch
import seaborn as sns
def _compute_conf_thresh(data):
dataset_name = data["dataset_name"][0].lower()
if dataset_name == "scannet":
thr = 5e-4
elif dataset_name == "megadepth":
thr = 1e-4
else:
raise ValueError(f"Unknown dataset: {dataset_name}")
return thr
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5):
"""Plot a set of images horizontally.
Args:
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
titles: a list of strings, as titles for each image.
cmaps: colormaps for monochrome images.
"""
n = len(imgs)
if not isinstance(cmaps, (list, tuple)):
cmaps = [cmaps] * n
# figsize = (size*n, size*3/4) if size is not None else None
figsize = (size * n, size * 6 / 5) if size is not None else None
fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
if n == 1:
ax = [ax]
for i in range(n):
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
ax[i].get_yaxis().set_ticks([])
ax[i].get_xaxis().set_ticks([])
ax[i].set_axis_off()
for spine in ax[i].spines.values(): # remove frame
spine.set_visible(False)
if titles:
ax[i].set_title(titles[i])
fig.tight_layout(pad=pad)
return fig
def plot_color_line_matches(lines, correct_matches=None, lw=2, indices=(0, 1)):
"""Plot line matches for existing images with multiple colors.
Args:
lines: list of ndarrays of size (N, 2, 2).
correct_matches: bool array of size (N,) indicating correct matches.
lw: line width as float pixels.
indices: indices of the images to draw the matches on.
"""
n_lines = len(lines[0])
colors = sns.color_palette("husl", n_colors=n_lines)
np.random.shuffle(colors)
alphas = np.ones(n_lines)
# If correct_matches is not None, display wrong matches with a low alpha
if correct_matches is not None:
alphas[~np.array(correct_matches)] = 0.2
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
fig.canvas.draw()
# Plot the lines
for a, l in zip(axes, lines):
# Transform the points into the figure coordinate system
transFigure = fig.transFigure.inverted()
endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
fig.lines += [
matplotlib.lines.Line2D(
(endpoint0[i, 0], endpoint1[i, 0]),
(endpoint0[i, 1], endpoint1[i, 1]),
zorder=1,
transform=fig.transFigure,
c=colors[i],
alpha=alphas[i],
linewidth=lw,
)
for i in range(n_lines)
]
return fig
def make_matching_figure(
img0,
img1,
mkpts0,
mkpts1,
color,
titles=None,
kpts0=None,
kpts1=None,
text=[],
dpi=75,
path=None,
pad=0,
):
# draw image pair
# assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
axes[0].imshow(img0) # , cmap='gray')
axes[1].imshow(img1) # , cmap='gray')
for i in range(2): # clear all frames
axes[i].get_yaxis().set_ticks([])
axes[i].get_xaxis().set_ticks([])
for spine in axes[i].spines.values():
spine.set_visible(False)
if titles is not None:
axes[i].set_title(titles[i])
plt.tight_layout(pad=pad)
if kpts0 is not None:
assert kpts1 is not None
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5)
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5)
# draw matches
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
fig.canvas.draw()
transFigure = fig.transFigure.inverted()
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
fig.lines = [
matplotlib.lines.Line2D(
(fkpts0[i, 0], fkpts1[i, 0]),
(fkpts0[i, 1], fkpts1[i, 1]),
transform=fig.transFigure,
c=color[i],
linewidth=2,
)
for i in range(len(mkpts0))
]
# freeze the axes to prevent the transform to change
axes[0].autoscale(enable=False)
axes[1].autoscale(enable=False)
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4)
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4)
# put txts
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
fig.text(
0.01,
0.99,
"\n".join(text),
transform=fig.axes[0].transAxes,
fontsize=15,
va="top",
ha="left",
color=txt_color,
)
# save or return figure
if path:
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
plt.close()
else:
return fig
def _make_evaluation_figure(data, b_id, alpha="dynamic"):
b_mask = data["m_bids"] == b_id
conf_thr = _compute_conf_thresh(data)
img0 = (
(data["image0"][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
)
img1 = (
(data["image1"][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
)
kpts0 = data["mkpts0_f"][b_mask].cpu().numpy()
kpts1 = data["mkpts1_f"][b_mask].cpu().numpy()
# for megadepth, we visualize matches on the resized image
if "scale0" in data:
kpts0 = kpts0 / data["scale0"][b_id].cpu().numpy()[[1, 0]]
kpts1 = kpts1 / data["scale1"][b_id].cpu().numpy()[[1, 0]]
epi_errs = data["epi_errs"][b_mask].cpu().numpy()
correct_mask = epi_errs < conf_thr
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
n_correct = np.sum(correct_mask)
n_gt_matches = int(data["conf_matrix_gt"][b_id].sum().cpu())
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
# recall might be larger than 1, since the calculation of conf_matrix_gt
# uses groundtruth depths and camera poses, but epipolar distance is used here.
# matching info
if alpha == "dynamic":
alpha = dynamic_alpha(len(correct_mask))
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
text = [
f"#Matches {len(kpts0)}",
f"Precision({conf_thr:.2e}) ({100 * precision:.1f}%):"
f" {n_correct}/{len(kpts0)}",
f"Recall({conf_thr:.2e}) ({100 * recall:.1f}%):"
f" {n_correct}/{n_gt_matches}",
]
# make the figure
figure = make_matching_figure(img0, img1, kpts0, kpts1, color, text=text)
return figure
def _make_confidence_figure(data, b_id):
# TODO: Implement confidence figure
raise NotImplementedError()
def make_matching_figures(data, config, mode="evaluation"):
"""Make matching figures for a batch.
Args:
data (Dict): a batch updated by PL_LoFTR.
config (Dict): matcher config
Returns:
figures (Dict[str, List[plt.figure]]
"""
assert mode in ["evaluation", "confidence"] # 'confidence'
figures = {mode: []}
for b_id in range(data["image0"].size(0)):
if mode == "evaluation":
fig = _make_evaluation_figure(
data, b_id, alpha=config.TRAINER.PLOT_MATCHES_ALPHA
)
elif mode == "confidence":
fig = _make_confidence_figure(data, b_id)
else:
raise ValueError(f"Unknown plot mode: {mode}")
figures[mode].append(fig)
return figures
def dynamic_alpha(
n_matches, milestones=[0, 300, 1000, 2000], alphas=[1.0, 0.8, 0.4, 0.2]
):
if n_matches == 0:
return 1.0
ranges = list(zip(alphas, alphas[1:] + [None]))
loc = bisect.bisect_right(milestones, n_matches) - 1
_range = ranges[loc]
if _range[1] is None:
return _range[0]
return _range[1] + (milestones[loc + 1] - n_matches) / (
milestones[loc + 1] - milestones[loc]
) * (_range[0] - _range[1])
def error_colormap(err, thr, alpha=1.0):
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
x = 1 - np.clip(err / (thr * 2), 0, 1)
return np.clip(
np.stack(
[2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1
),
0,
1,
)
np.random.seed(1995)
color_map = np.arange(100)
np.random.shuffle(color_map)
def draw_topics(
data,
img0,
img1,
saved_folder="viz_topics",
show_n_topics=8,
saved_name=None,
):
topic0, topic1 = data["topic_matrix"]["img0"], data["topic_matrix"]["img1"]
hw0_c, hw1_c = data["hw0_c"], data["hw1_c"]
hw0_i, hw1_i = data["hw0_i"], data["hw1_i"]
# print(hw0_i, hw1_i)
scale0, scale1 = hw0_i[0] // hw0_c[0], hw1_i[0] // hw1_c[0]
if "scale0" in data:
scale0 *= data["scale0"][0]
else:
scale0 = (scale0, scale0)
if "scale1" in data:
scale1 *= data["scale1"][0]
else:
scale1 = (scale1, scale1)
n_topics = topic0.shape[-1]
# mask0_nonzero = topic0[0].sum(dim=-1, keepdim=True) > 0
# mask1_nonzero = topic1[0].sum(dim=-1, keepdim=True) > 0
theta0 = topic0[0].sum(dim=0)
theta0 /= theta0.sum().float()
theta1 = topic1[0].sum(dim=0)
theta1 /= theta1.sum().float()
# top_topic0 = torch.argsort(theta0, descending=True)[:show_n_topics]
# top_topic1 = torch.argsort(theta1, descending=True)[:show_n_topics]
top_topics = torch.argsort(theta0 * theta1, descending=True)[:show_n_topics]
# print(sum_topic0, sum_topic1)
topic0 = topic0[0].argmax(
dim=-1, keepdim=True
) # .float() / (n_topics - 1) #* 255 + 1 #
# topic0[~mask0_nonzero] = -1
topic1 = topic1[0].argmax(
dim=-1, keepdim=True
) # .float() / (n_topics - 1) #* 255 + 1
# topic1[~mask1_nonzero] = -1
label_img0, label_img1 = (
torch.zeros_like(topic0) - 1,
torch.zeros_like(topic1) - 1,
)
for i, k in enumerate(top_topics):
label_img0[topic0 == k] = color_map[k]
label_img1[topic1 == k] = color_map[k]
# print(hw0_c, scale0)
# print(hw1_c, scale1)
# map_topic0 = F.fold(label_img0.unsqueeze(0), hw0_i, kernel_size=scale0, stride=scale0)
map_topic0 = (
label_img0.float().view(hw0_c).cpu().numpy()
) # map_topic0.squeeze(0).squeeze(0).cpu().numpy()
map_topic0 = cv2.resize(
map_topic0, (int(hw0_c[1] * scale0[0]), int(hw0_c[0] * scale0[1]))
)
# map_topic1 = F.fold(label_img1.unsqueeze(0), hw1_i, kernel_size=scale1, stride=scale1)
map_topic1 = (
label_img1.float().view(hw1_c).cpu().numpy()
) # map_topic1.squeeze(0).squeeze(0).cpu().numpy()
map_topic1 = cv2.resize(
map_topic1, (int(hw1_c[1] * scale1[0]), int(hw1_c[0] * scale1[1]))
)
# show image0
if saved_name is None:
return map_topic0, map_topic1
if not os.path.exists(saved_folder):
os.makedirs(saved_folder)
path_saved_img0 = os.path.join(saved_folder, "{}_0.png".format(saved_name))
plt.imshow(img0)
masked_map_topic0 = np.ma.masked_where(map_topic0 < 0, map_topic0)
plt.imshow(
masked_map_topic0,
cmap=plt.cm.jet,
vmin=0,
vmax=n_topics - 1,
alpha=0.3,
interpolation="bilinear",
)
# plt.show()
plt.axis("off")
plt.savefig(path_saved_img0, bbox_inches="tight", pad_inches=0, dpi=250)
plt.close()
path_saved_img1 = os.path.join(saved_folder, "{}_1.png".format(saved_name))
plt.imshow(img1)
masked_map_topic1 = np.ma.masked_where(map_topic1 < 0, map_topic1)
plt.imshow(
masked_map_topic1,
cmap=plt.cm.jet,
vmin=0,
vmax=n_topics - 1,
alpha=0.3,
interpolation="bilinear",
)
plt.axis("off")
plt.savefig(path_saved_img1, bbox_inches="tight", pad_inches=0, dpi=250)
plt.close()
def draw_topicfm_demo(
data,
img0,
img1,
mkpts0,
mkpts1,
mcolor,
text,
show_n_topics=8,
topic_alpha=0.3,
margin=5,
path=None,
opencv_display=False,
opencv_title="",
):
topic_map0, topic_map1 = draw_topics(
data, img0, img1, show_n_topics=show_n_topics
)
mask_tm0, mask_tm1 = np.expand_dims(
topic_map0 >= 0, axis=-1
), np.expand_dims(topic_map1 >= 0, axis=-1)
topic_cm0, topic_cm1 = cm.jet(topic_map0 / 99.0), cm.jet(topic_map1 / 99.0)
topic_cm0 = cv2.cvtColor(
topic_cm0[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR
)
topic_cm1 = cv2.cvtColor(
topic_cm1[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR
)
overlay0 = (mask_tm0 * topic_cm0 + (1 - mask_tm0) * img0).astype(np.float32)
overlay1 = (mask_tm1 * topic_cm1 + (1 - mask_tm1) * img1).astype(np.float32)
cv2.addWeighted(overlay0, topic_alpha, img0, 1 - topic_alpha, 0, overlay0)
cv2.addWeighted(overlay1, topic_alpha, img1, 1 - topic_alpha, 0, overlay1)
overlay0, overlay1 = (overlay0 * 255).astype(np.uint8), (
overlay1 * 255
).astype(np.uint8)
h0, w0 = img0.shape[:2]
h1, w1 = img1.shape[:2]
h, w = h0 * 2 + margin * 2, w0 * 2 + margin
out_fig = 255 * np.ones((h, w, 3), dtype=np.uint8)
out_fig[:h0, :w0] = overlay0
if h0 >= h1:
start = (h0 - h1) // 2
out_fig[
start : (start + h1), (w0 + margin) : (w0 + margin + w1)
] = overlay1
else:
start = (h1 - h0) // 2
out_fig[:h0, (w0 + margin) : (w0 + margin + w1)] = overlay1[
start : (start + h0)
]
step_h = h0 + margin * 2
out_fig[step_h : step_h + h0, :w0] = (img0 * 255).astype(np.uint8)
if h0 >= h1:
start = step_h + (h0 - h1) // 2
out_fig[start : start + h1, (w0 + margin) : (w0 + margin + w1)] = (
img1 * 255
).astype(np.uint8)
else:
start = (h1 - h0) // 2
out_fig[step_h : step_h + h0, (w0 + margin) : (w0 + margin + w1)] = (
img1[start : start + h0] * 255
).astype(np.uint8)
# draw matching lines, this is inspried from
# https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/master/models/utils.py
mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
mcolor = (np.array(mcolor[:, [2, 1, 0]]) * 255).astype(int)
for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, mcolor):
c = c.tolist()
cv2.line(
out_fig,
(x0, y0 + step_h),
(x1 + margin + w0, y1 + step_h + (h0 - h1) // 2),
color=c,
thickness=1,
lineType=cv2.LINE_AA,
)
# display line end-points as circles
cv2.circle(out_fig, (x0, y0 + step_h), 2, c, -1, lineType=cv2.LINE_AA)
cv2.circle(
out_fig,
(x1 + margin + w0, y1 + step_h + (h0 - h1) // 2),
2,
c,
-1,
lineType=cv2.LINE_AA,
)
# Scale factor for consistent visualization across scales.
sc = min(h / 960.0, 2.0)
# Big text.
Ht = int(30 * sc) # text height
txt_color_fg = (255, 255, 255)
txt_color_bg = (0, 0, 0)
for i, t in enumerate(text):
cv2.putText(
out_fig,
t,
(int(8 * sc), Ht + step_h * i),
cv2.FONT_HERSHEY_DUPLEX,
1.0 * sc,
txt_color_bg,
2,
cv2.LINE_AA,
)
cv2.putText(
out_fig,
t,
(int(8 * sc), Ht + step_h * i),
cv2.FONT_HERSHEY_DUPLEX,
1.0 * sc,
txt_color_fg,
1,
cv2.LINE_AA,
)
if path is not None:
cv2.imwrite(str(path), out_fig)
if opencv_display:
cv2.imshow(opencv_title, out_fig)
cv2.waitKey(1)
return out_fig
def fig2im(fig):
fig.canvas.draw()
w, h = fig.canvas.get_width_height()
buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1")
im = buf_ndarray.reshape(h, w, 3)
return im
def draw_matches(
mkpts0, mkpts1, img0, img1, conf, titles=None, dpi=150, path=None, pad=0.5
):
thr = 5e-4
thr = 0.5
color = error_colormap(conf, thr, alpha=0.1)
text = [
f"image name",
f"#Matches: {len(mkpts0)}",
]
if path:
fig2im(
make_matching_figure(
img0,
img1,
mkpts0,
mkpts1,
color,
titles=titles,
text=text,
path=path,
dpi=dpi,
pad=pad,
)
)
else:
return fig2im(
make_matching_figure(
img0,
img1,
mkpts0,
mkpts1,
color,
titles=titles,
text=text,
pad=pad,
dpi=dpi,
)
)
def draw_image_pairs(img0, img1, text=[], dpi=75, path=None, pad=0.5):
# draw image pair
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
axes[0].imshow(img0) # , cmap='gray')
axes[1].imshow(img1) # , cmap='gray')
for i in range(2): # clear all frames
axes[i].get_yaxis().set_ticks([])
axes[i].get_xaxis().set_ticks([])
for spine in axes[i].spines.values():
spine.set_visible(False)
plt.tight_layout(pad=pad)
# put txts
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
fig.text(
0.01,
0.99,
"\n".join(text),
transform=fig.axes[0].transAxes,
fontsize=15,
va="top",
ha="left",
color=txt_color,
)
# save or return figure
if path:
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
plt.close()
else:
return fig2im(fig)
|