File size: 5,654 Bytes
9223079
7ac633e
9223079
 
 
7ac633e
 
 
9223079
 
 
7ac633e
 
 
 
 
 
 
 
9223079
 
 
 
 
7ac633e
9223079
 
7ac633e
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import logging
import sqlite3
from collections import defaultdict
from pathlib import Path

import numpy as np
from tqdm import tqdm

from ...colmap_from_nvm import (
    camera_center_to_translation,
    recover_database_images_and_ids,
)
from ...utils.read_write_model import (
    CAMERA_MODEL_IDS,
    Camera,
    Image,
    Point3D,
    write_model,
)

logger = logging.getLogger(__name__)


def read_nvm_model(nvm_path, database_path, image_ids, camera_ids, skip_points=False):
    # Extract the intrinsics from the db file instead of the NVM model
    db = sqlite3.connect(str(database_path))
    ret = db.execute("SELECT camera_id, model, width, height, params FROM cameras;")
    cameras = {}
    for camera_id, camera_model, width, height, params in ret:
        params = np.fromstring(params, dtype=np.double).reshape(-1)
        camera_model = CAMERA_MODEL_IDS[camera_model]
        assert len(params) == camera_model.num_params, (
            len(params),
            camera_model.num_params,
        )
        camera = Camera(
            id=camera_id,
            model=camera_model.model_name,
            width=int(width),
            height=int(height),
            params=params,
        )
        cameras[camera_id] = camera

    nvm_f = open(nvm_path, "r")
    line = nvm_f.readline()
    while line == "\n" or line.startswith("NVM_V3"):
        line = nvm_f.readline()
    num_images = int(line)
    # assert num_images == len(cameras), (num_images, len(cameras))

    logger.info(f"Reading {num_images} images...")
    image_idx_to_db_image_id = []
    image_data = []
    i = 0
    while i < num_images:
        line = nvm_f.readline()
        if line == "\n":
            continue
        data = line.strip("\n").lstrip("./").split(" ")
        image_data.append(data)
        image_idx_to_db_image_id.append(image_ids[data[0]])
        i += 1

    line = nvm_f.readline()
    while line == "\n":
        line = nvm_f.readline()
    num_points = int(line)

    if skip_points:
        logger.info(f"Skipping {num_points} points.")
        num_points = 0
    else:
        logger.info(f"Reading {num_points} points...")
    points3D = {}
    image_idx_to_keypoints = defaultdict(list)
    i = 0
    pbar = tqdm(total=num_points, unit="pts")
    while i < num_points:
        line = nvm_f.readline()
        if line == "\n":
            continue

        data = line.strip("\n").split(" ")
        x, y, z, r, g, b, num_observations = data[:7]
        obs_image_ids, point2D_idxs = [], []
        for j in range(int(num_observations)):
            s = 7 + 4 * j
            img_index, kp_index, kx, ky = data[s : s + 4]
            image_idx_to_keypoints[int(img_index)].append(
                (int(kp_index), float(kx), float(ky), i)
            )
            db_image_id = image_idx_to_db_image_id[int(img_index)]
            obs_image_ids.append(db_image_id)
            point2D_idxs.append(kp_index)

        point = Point3D(
            id=i,
            xyz=np.array([x, y, z], float),
            rgb=np.array([r, g, b], int),
            error=1.0,  # fake
            image_ids=np.array(obs_image_ids, int),
            point2D_idxs=np.array(point2D_idxs, int),
        )
        points3D[i] = point

        i += 1
        pbar.update(1)
    pbar.close()

    logger.info("Parsing image data...")
    images = {}
    for i, data in enumerate(image_data):
        # Skip the focal length. Skip the distortion and terminal 0.
        name, _, qw, qx, qy, qz, cx, cy, cz, _, _ = data
        qvec = np.array([qw, qx, qy, qz], float)
        c = np.array([cx, cy, cz], float)
        t = camera_center_to_translation(c, qvec)

        if i in image_idx_to_keypoints:
            # NVM only stores triangulated 2D keypoints: add dummy ones
            keypoints = image_idx_to_keypoints[i]
            point2D_idxs = np.array([d[0] for d in keypoints])
            tri_xys = np.array([[x, y] for _, x, y, _ in keypoints])
            tri_ids = np.array([i for _, _, _, i in keypoints])

            num_2Dpoints = max(point2D_idxs) + 1
            xys = np.zeros((num_2Dpoints, 2), float)
            point3D_ids = np.full(num_2Dpoints, -1, int)
            xys[point2D_idxs] = tri_xys
            point3D_ids[point2D_idxs] = tri_ids
        else:
            xys = np.zeros((0, 2), float)
            point3D_ids = np.full(0, -1, int)

        image_id = image_ids[name]
        image = Image(
            id=image_id,
            qvec=qvec,
            tvec=t,
            camera_id=camera_ids[name],
            name=name.replace("png", "jpg"),  # some hack required for RobotCar
            xys=xys,
            point3D_ids=point3D_ids,
        )
        images[image_id] = image

    return cameras, images, points3D


def main(nvm, database, output, skip_points=False):
    assert nvm.exists(), nvm
    assert database.exists(), database

    image_ids, camera_ids = recover_database_images_and_ids(database)

    logger.info("Reading the NVM model...")
    model = read_nvm_model(
        nvm, database, image_ids, camera_ids, skip_points=skip_points
    )

    logger.info("Writing the COLMAP model...")
    output.mkdir(exist_ok=True, parents=True)
    write_model(*model, path=str(output), ext=".bin")
    logger.info("Done.")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--nvm", required=True, type=Path)
    parser.add_argument("--database", required=True, type=Path)
    parser.add_argument("--output", required=True, type=Path)
    parser.add_argument("--skip_points", action="store_true")
    args = parser.parse_args()
    main(**args.__dict__)