File size: 10,796 Bytes
fb98d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Base class for colmap / kapture
# --------------------------------------------------------
import os
import numpy as np
from tqdm import tqdm
import collections
import pickle
import PIL.Image
import torch
from scipy.spatial.transform import Rotation
import torchvision.transforms as tvf

from kapture.core import CameraType
from kapture.io.csv import kapture_from_dir
from kapture_localization.utils.pairsfile import get_ordered_pairs_from_file

from dust3r_visloc.datasets.utils import cam_to_world_from_kapture, get_resize_function, rescale_points3d
from dust3r_visloc.datasets.base_dataset import BaseVislocDataset
from dust3r.datasets.utils.transforms import ImgNorm
from dust3r.utils.geometry import colmap_to_opencv_intrinsics

KaptureSensor = collections.namedtuple('Sensor', 'sensor_params camera_params')


def kapture_to_opencv_intrinsics(sensor):
    """
    Convert from Kapture to OpenCV parameters.
    Warning: we assume that the camera and pixel coordinates follow Colmap conventions here.
    Args:
        sensor: Kapture sensor
    """
    sensor_type = sensor.sensor_params[0]
    if sensor_type == "SIMPLE_PINHOLE":
        # Simple pinhole model.
        # We still call OpenCV undistorsion however for code simplicity.
        w, h, f, cx, cy = sensor.camera_params
        k1 = 0
        k2 = 0
        p1 = 0
        p2 = 0
        fx = fy = f
    elif sensor_type == "PINHOLE":
        w, h, fx, fy, cx, cy = sensor.camera_params
        k1 = 0
        k2 = 0
        p1 = 0
        p2 = 0
    elif sensor_type == "SIMPLE_RADIAL":
        w, h, f, cx, cy, k1 = sensor.camera_params
        k2 = 0
        p1 = 0
        p2 = 0
        fx = fy = f
    elif sensor_type == "RADIAL":
        w, h, f, cx, cy, k1, k2 = sensor.camera_params
        p1 = 0
        p2 = 0
        fx = fy = f
    elif sensor_type == "OPENCV":
        w, h, fx, fy, cx, cy, k1, k2, p1, p2 = sensor.camera_params
    else:
        raise NotImplementedError(f"Sensor type {sensor_type} is not supported yet.")

    cameraMatrix = np.asarray([[fx, 0, cx],
                               [0, fy, cy],
                               [0, 0, 1]], dtype=np.float32)

    # We assume that Kapture data comes from Colmap: the origin is different.
    cameraMatrix = colmap_to_opencv_intrinsics(cameraMatrix)

    distCoeffs = np.asarray([k1, k2, p1, p2], dtype=np.float32)
    return cameraMatrix, distCoeffs, (w, h)


def K_from_colmap(elems):
    sensor = KaptureSensor(elems, tuple(map(float, elems[1:])))
    cameraMatrix, distCoeffs, (w, h) = kapture_to_opencv_intrinsics(sensor)
    res = dict(resolution=(w, h),
               intrinsics=cameraMatrix,
               distortion=distCoeffs)
    return res


def pose_from_qwxyz_txyz(elems):
    qw, qx, qy, qz, tx, ty, tz = map(float, elems)
    pose = np.eye(4)
    pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix()
    pose[:3, 3] = (tx, ty, tz)
    return np.linalg.inv(pose)  # returns cam2world


class BaseVislocColmapDataset(BaseVislocDataset):
    def __init__(self, image_path, map_path, query_path, pairsfile_path, topk=1, cache_sfm=False):
        super().__init__()
        self.topk = topk
        self.num_views = self.topk + 1
        self.image_path = image_path
        self.cache_sfm = cache_sfm

        self._load_sfm(map_path)

        kdata_query = kapture_from_dir(query_path)
        assert kdata_query.records_camera is not None and kdata_query.trajectories is not None

        kdata_query_searchindex = {kdata_query.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id)
                                   for timestamp, sensor_id in kdata_query.records_camera.key_pairs()}
        self.query_data = {'kdata': kdata_query, 'searchindex': kdata_query_searchindex}

        self.pairs = get_ordered_pairs_from_file(pairsfile_path)
        self.scenes = kdata_query.records_camera.data_list()

    def _load_sfm(self, sfm_dir):
        sfm_cache_path = os.path.join(sfm_dir, 'dust3r_cache.pkl')
        if os.path.isfile(sfm_cache_path) and self.cache_sfm:
            with open(sfm_cache_path, "rb") as f:
                data = pickle.load(f)
                self.img_infos = data['img_infos']
                self.points3D = data['points3D']
            return

        # load cameras
        with open(os.path.join(sfm_dir, 'cameras.txt'), 'r') as f:
            raw = f.read().splitlines()[3:]  # skip header

        intrinsics = {}
        for camera in tqdm(raw):
            camera = camera.split(' ')
            intrinsics[int(camera[0])] = K_from_colmap(camera[1:])

        # load images
        with open(os.path.join(sfm_dir, 'images.txt'), 'r') as f:
            raw = f.read().splitlines()
            raw = [line for line in raw if not line.startswith('#')]  # skip header

        self.img_infos = {}
        for image, points in tqdm(zip(raw[0::2], raw[1::2]), total=len(raw) // 2):
            image = image.split(' ')
            points = points.split(' ')

            img_name = image[-1]
            current_points2D = {int(i): (float(x), float(y))
                                for i, x, y in zip(points[2::3], points[0::3], points[1::3]) if i != '-1'}
            self.img_infos[img_name] = dict(intrinsics[int(image[-2])],
                                            path=img_name,
                                            camera_pose=pose_from_qwxyz_txyz(image[1: -2]),
                                            sparse_pts2d=current_points2D)

        # load 3D points
        with open(os.path.join(sfm_dir, 'points3D.txt'), 'r') as f:
            raw = f.read().splitlines()
            raw = [line for line in raw if not line.startswith('#')]  # skip header

        self.points3D = {}
        for point in tqdm(raw):
            point = point.split()
            self.points3D[int(point[0])] = tuple(map(float, point[1:4]))

        if self.cache_sfm:
            to_save = \
                {
                    'img_infos': self.img_infos,
                    'points3D': self.points3D
                }
            with open(sfm_cache_path, "wb") as f:
                pickle.dump(to_save, f)

    def __len__(self):
        return len(self.scenes)

    def _get_view_query(self, imgname):
        kdata, searchindex = map(self.query_data.get, ['kdata', 'searchindex'])

        timestamp, camera_id = searchindex[imgname]

        camera_params = kdata.sensors[camera_id].camera_params
        if kdata.sensors[camera_id].camera_type == CameraType.SIMPLE_PINHOLE:
            W, H, f, cx, cy = camera_params
            k1 = 0
            fx = fy = f
        elif kdata.sensors[camera_id].camera_type == CameraType.SIMPLE_RADIAL:
            W, H, f, cx, cy, k1 = camera_params
            fx = fy = f
        else:
            raise NotImplementedError('not implemented')

        W, H = int(W), int(H)
        intrinsics = np.float32([(fx, 0, cx),
                                 (0, fy, cy),
                                 (0, 0, 1)])
        intrinsics = colmap_to_opencv_intrinsics(intrinsics)
        distortion = [k1, 0, 0, 0]

        if kdata.trajectories is not None and (timestamp, camera_id) in kdata.trajectories:
            cam_to_world = cam_to_world_from_kapture(kdata, timestamp, camera_id)
        else:
            cam_to_world = np.eye(4, dtype=np.float32)

        # Load RGB image
        rgb_image = PIL.Image.open(os.path.join(self.image_path, imgname)).convert('RGB')
        rgb_image.load()
        resize_func, _, to_orig = get_resize_function(self.maxdim, self.patch_size, H, W)
        rgb_tensor = resize_func(ImgNorm(rgb_image))

        view = {
            'intrinsics': intrinsics,
            'distortion': distortion,
            'cam_to_world': cam_to_world,
            'rgb': rgb_image,
            'rgb_rescaled': rgb_tensor,
            'to_orig': to_orig,
            'idx': 0,
            'image_name': imgname
        }
        return view

    def _get_view_map(self, imgname, idx):
        infos = self.img_infos[imgname]

        rgb_image = PIL.Image.open(os.path.join(self.image_path, infos['path'])).convert('RGB')
        rgb_image.load()
        W, H = rgb_image.size
        intrinsics = infos['intrinsics']
        intrinsics = colmap_to_opencv_intrinsics(intrinsics)
        distortion_coefs = infos['distortion']

        pts2d = infos['sparse_pts2d']
        sparse_pos2d = np.float32(list(pts2d.values()))  # pts2d from colmap
        sparse_pts3d = np.float32([self.points3D[i] for i in pts2d])

        # store full resolution 2D->3D
        sparse_pos2d_cv2 = sparse_pos2d.copy()
        sparse_pos2d_cv2[:, 0] -= 0.5
        sparse_pos2d_cv2[:, 1] -= 0.5
        sparse_pos2d_int = sparse_pos2d_cv2.round().astype(np.int64)
        valid = (sparse_pos2d_int[:, 0] >= 0) & (sparse_pos2d_int[:, 0] < W) & (
            sparse_pos2d_int[:, 1] >= 0) & (sparse_pos2d_int[:, 1] < H)
        sparse_pos2d_int = sparse_pos2d_int[valid]
        # nan => invalid
        pts3d = np.full((H, W, 3), np.nan, dtype=np.float32)
        pts3d[sparse_pos2d_int[:, 1], sparse_pos2d_int[:, 0]] = sparse_pts3d[valid]
        pts3d = torch.from_numpy(pts3d)

        cam_to_world = infos['camera_pose']  # cam2world

        # also store resized resolution 2D->3D
        resize_func, to_resize, to_orig = get_resize_function(self.maxdim, self.patch_size, H, W)
        rgb_tensor = resize_func(ImgNorm(rgb_image))

        HR, WR = rgb_tensor.shape[1:]
        _, _, pts3d_rescaled, valid_rescaled = rescale_points3d(sparse_pos2d_cv2, sparse_pts3d, to_resize, HR, WR)
        pts3d_rescaled = torch.from_numpy(pts3d_rescaled)
        valid_rescaled = torch.from_numpy(valid_rescaled)

        view = {
            'intrinsics': intrinsics,
            'distortion': distortion_coefs,
            'cam_to_world': cam_to_world,
            'rgb': rgb_image,
            "pts3d": pts3d,
            "valid": pts3d.sum(dim=-1).isfinite(),
            'rgb_rescaled': rgb_tensor,
            "pts3d_rescaled": pts3d_rescaled,
            "valid_rescaled": valid_rescaled,
            'to_orig': to_orig,
            'idx': idx,
            'image_name': imgname
        }
        return view

    def __getitem__(self, idx):
        assert self.maxdim is not None and self.patch_size is not None
        query_image = self.scenes[idx]
        map_images = [p[0] for p in self.pairs[query_image][:self.topk]]
        views = []
        views.append(self._get_view_query(query_image))
        for idx, map_image in enumerate(map_images):
            views.append(self._get_view_map(map_image, idx + 1))
        return views