Spaces:
Running
Running
File size: 10,796 Bytes
fb98d2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Base class for colmap / kapture
# --------------------------------------------------------
import os
import numpy as np
from tqdm import tqdm
import collections
import pickle
import PIL.Image
import torch
from scipy.spatial.transform import Rotation
import torchvision.transforms as tvf
from kapture.core import CameraType
from kapture.io.csv import kapture_from_dir
from kapture_localization.utils.pairsfile import get_ordered_pairs_from_file
from dust3r_visloc.datasets.utils import cam_to_world_from_kapture, get_resize_function, rescale_points3d
from dust3r_visloc.datasets.base_dataset import BaseVislocDataset
from dust3r.datasets.utils.transforms import ImgNorm
from dust3r.utils.geometry import colmap_to_opencv_intrinsics
KaptureSensor = collections.namedtuple('Sensor', 'sensor_params camera_params')
def kapture_to_opencv_intrinsics(sensor):
"""
Convert from Kapture to OpenCV parameters.
Warning: we assume that the camera and pixel coordinates follow Colmap conventions here.
Args:
sensor: Kapture sensor
"""
sensor_type = sensor.sensor_params[0]
if sensor_type == "SIMPLE_PINHOLE":
# Simple pinhole model.
# We still call OpenCV undistorsion however for code simplicity.
w, h, f, cx, cy = sensor.camera_params
k1 = 0
k2 = 0
p1 = 0
p2 = 0
fx = fy = f
elif sensor_type == "PINHOLE":
w, h, fx, fy, cx, cy = sensor.camera_params
k1 = 0
k2 = 0
p1 = 0
p2 = 0
elif sensor_type == "SIMPLE_RADIAL":
w, h, f, cx, cy, k1 = sensor.camera_params
k2 = 0
p1 = 0
p2 = 0
fx = fy = f
elif sensor_type == "RADIAL":
w, h, f, cx, cy, k1, k2 = sensor.camera_params
p1 = 0
p2 = 0
fx = fy = f
elif sensor_type == "OPENCV":
w, h, fx, fy, cx, cy, k1, k2, p1, p2 = sensor.camera_params
else:
raise NotImplementedError(f"Sensor type {sensor_type} is not supported yet.")
cameraMatrix = np.asarray([[fx, 0, cx],
[0, fy, cy],
[0, 0, 1]], dtype=np.float32)
# We assume that Kapture data comes from Colmap: the origin is different.
cameraMatrix = colmap_to_opencv_intrinsics(cameraMatrix)
distCoeffs = np.asarray([k1, k2, p1, p2], dtype=np.float32)
return cameraMatrix, distCoeffs, (w, h)
def K_from_colmap(elems):
sensor = KaptureSensor(elems, tuple(map(float, elems[1:])))
cameraMatrix, distCoeffs, (w, h) = kapture_to_opencv_intrinsics(sensor)
res = dict(resolution=(w, h),
intrinsics=cameraMatrix,
distortion=distCoeffs)
return res
def pose_from_qwxyz_txyz(elems):
qw, qx, qy, qz, tx, ty, tz = map(float, elems)
pose = np.eye(4)
pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix()
pose[:3, 3] = (tx, ty, tz)
return np.linalg.inv(pose) # returns cam2world
class BaseVislocColmapDataset(BaseVislocDataset):
def __init__(self, image_path, map_path, query_path, pairsfile_path, topk=1, cache_sfm=False):
super().__init__()
self.topk = topk
self.num_views = self.topk + 1
self.image_path = image_path
self.cache_sfm = cache_sfm
self._load_sfm(map_path)
kdata_query = kapture_from_dir(query_path)
assert kdata_query.records_camera is not None and kdata_query.trajectories is not None
kdata_query_searchindex = {kdata_query.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id)
for timestamp, sensor_id in kdata_query.records_camera.key_pairs()}
self.query_data = {'kdata': kdata_query, 'searchindex': kdata_query_searchindex}
self.pairs = get_ordered_pairs_from_file(pairsfile_path)
self.scenes = kdata_query.records_camera.data_list()
def _load_sfm(self, sfm_dir):
sfm_cache_path = os.path.join(sfm_dir, 'dust3r_cache.pkl')
if os.path.isfile(sfm_cache_path) and self.cache_sfm:
with open(sfm_cache_path, "rb") as f:
data = pickle.load(f)
self.img_infos = data['img_infos']
self.points3D = data['points3D']
return
# load cameras
with open(os.path.join(sfm_dir, 'cameras.txt'), 'r') as f:
raw = f.read().splitlines()[3:] # skip header
intrinsics = {}
for camera in tqdm(raw):
camera = camera.split(' ')
intrinsics[int(camera[0])] = K_from_colmap(camera[1:])
# load images
with open(os.path.join(sfm_dir, 'images.txt'), 'r') as f:
raw = f.read().splitlines()
raw = [line for line in raw if not line.startswith('#')] # skip header
self.img_infos = {}
for image, points in tqdm(zip(raw[0::2], raw[1::2]), total=len(raw) // 2):
image = image.split(' ')
points = points.split(' ')
img_name = image[-1]
current_points2D = {int(i): (float(x), float(y))
for i, x, y in zip(points[2::3], points[0::3], points[1::3]) if i != '-1'}
self.img_infos[img_name] = dict(intrinsics[int(image[-2])],
path=img_name,
camera_pose=pose_from_qwxyz_txyz(image[1: -2]),
sparse_pts2d=current_points2D)
# load 3D points
with open(os.path.join(sfm_dir, 'points3D.txt'), 'r') as f:
raw = f.read().splitlines()
raw = [line for line in raw if not line.startswith('#')] # skip header
self.points3D = {}
for point in tqdm(raw):
point = point.split()
self.points3D[int(point[0])] = tuple(map(float, point[1:4]))
if self.cache_sfm:
to_save = \
{
'img_infos': self.img_infos,
'points3D': self.points3D
}
with open(sfm_cache_path, "wb") as f:
pickle.dump(to_save, f)
def __len__(self):
return len(self.scenes)
def _get_view_query(self, imgname):
kdata, searchindex = map(self.query_data.get, ['kdata', 'searchindex'])
timestamp, camera_id = searchindex[imgname]
camera_params = kdata.sensors[camera_id].camera_params
if kdata.sensors[camera_id].camera_type == CameraType.SIMPLE_PINHOLE:
W, H, f, cx, cy = camera_params
k1 = 0
fx = fy = f
elif kdata.sensors[camera_id].camera_type == CameraType.SIMPLE_RADIAL:
W, H, f, cx, cy, k1 = camera_params
fx = fy = f
else:
raise NotImplementedError('not implemented')
W, H = int(W), int(H)
intrinsics = np.float32([(fx, 0, cx),
(0, fy, cy),
(0, 0, 1)])
intrinsics = colmap_to_opencv_intrinsics(intrinsics)
distortion = [k1, 0, 0, 0]
if kdata.trajectories is not None and (timestamp, camera_id) in kdata.trajectories:
cam_to_world = cam_to_world_from_kapture(kdata, timestamp, camera_id)
else:
cam_to_world = np.eye(4, dtype=np.float32)
# Load RGB image
rgb_image = PIL.Image.open(os.path.join(self.image_path, imgname)).convert('RGB')
rgb_image.load()
resize_func, _, to_orig = get_resize_function(self.maxdim, self.patch_size, H, W)
rgb_tensor = resize_func(ImgNorm(rgb_image))
view = {
'intrinsics': intrinsics,
'distortion': distortion,
'cam_to_world': cam_to_world,
'rgb': rgb_image,
'rgb_rescaled': rgb_tensor,
'to_orig': to_orig,
'idx': 0,
'image_name': imgname
}
return view
def _get_view_map(self, imgname, idx):
infos = self.img_infos[imgname]
rgb_image = PIL.Image.open(os.path.join(self.image_path, infos['path'])).convert('RGB')
rgb_image.load()
W, H = rgb_image.size
intrinsics = infos['intrinsics']
intrinsics = colmap_to_opencv_intrinsics(intrinsics)
distortion_coefs = infos['distortion']
pts2d = infos['sparse_pts2d']
sparse_pos2d = np.float32(list(pts2d.values())) # pts2d from colmap
sparse_pts3d = np.float32([self.points3D[i] for i in pts2d])
# store full resolution 2D->3D
sparse_pos2d_cv2 = sparse_pos2d.copy()
sparse_pos2d_cv2[:, 0] -= 0.5
sparse_pos2d_cv2[:, 1] -= 0.5
sparse_pos2d_int = sparse_pos2d_cv2.round().astype(np.int64)
valid = (sparse_pos2d_int[:, 0] >= 0) & (sparse_pos2d_int[:, 0] < W) & (
sparse_pos2d_int[:, 1] >= 0) & (sparse_pos2d_int[:, 1] < H)
sparse_pos2d_int = sparse_pos2d_int[valid]
# nan => invalid
pts3d = np.full((H, W, 3), np.nan, dtype=np.float32)
pts3d[sparse_pos2d_int[:, 1], sparse_pos2d_int[:, 0]] = sparse_pts3d[valid]
pts3d = torch.from_numpy(pts3d)
cam_to_world = infos['camera_pose'] # cam2world
# also store resized resolution 2D->3D
resize_func, to_resize, to_orig = get_resize_function(self.maxdim, self.patch_size, H, W)
rgb_tensor = resize_func(ImgNorm(rgb_image))
HR, WR = rgb_tensor.shape[1:]
_, _, pts3d_rescaled, valid_rescaled = rescale_points3d(sparse_pos2d_cv2, sparse_pts3d, to_resize, HR, WR)
pts3d_rescaled = torch.from_numpy(pts3d_rescaled)
valid_rescaled = torch.from_numpy(valid_rescaled)
view = {
'intrinsics': intrinsics,
'distortion': distortion_coefs,
'cam_to_world': cam_to_world,
'rgb': rgb_image,
"pts3d": pts3d,
"valid": pts3d.sum(dim=-1).isfinite(),
'rgb_rescaled': rgb_tensor,
"pts3d_rescaled": pts3d_rescaled,
"valid_rescaled": valid_rescaled,
'to_orig': to_orig,
'idx': idx,
'image_name': imgname
}
return view
def __getitem__(self, idx):
assert self.maxdim is not None and self.patch_size is not None
query_image = self.scenes[idx]
map_images = [p[0] for p in self.pairs[query_image][:self.topk]]
views = []
views.append(self._get_view_query(query_image))
for idx, map_image in enumerate(map_images):
views.append(self._get_view_map(map_image, idx + 1))
return views
|