File size: 6,368 Bytes
fb98d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# main pnp code
# --------------------------------------------------------
import numpy as np
import quaternion
import cv2
from packaging import version

from dust3r.utils.geometry import opencv_to_colmap_intrinsics

try:
    import poselib  # noqa
    HAS_POSELIB = True
except Exception as e:
    HAS_POSELIB = False

try:
    import pycolmap  # noqa
    version_number = pycolmap.__version__
    if version.parse(version_number) < version.parse("0.5.0"):
        HAS_PYCOLMAP = False
    else:
        HAS_PYCOLMAP = True
except Exception as e:
    HAS_PYCOLMAP = False
    
def run_pnp(pts2D, pts3D, K, distortion = None, mode='cv2', reprojectionError=5, img_size = None):
    """
    use OPENCV model for distortion (4 values)
    """
    assert mode in ['cv2', 'poselib', 'pycolmap']
    try:
        if len(pts2D) > 4 and mode == "cv2":
            confidence = 0.9999
            iterationsCount = 10_000
            if distortion is not None:
                cv2_pts2ds = np.copy(pts2D)
                cv2_pts2ds = cv2.undistortPoints(cv2_pts2ds, K, np.array(distortion), R=None, P=K)
                pts2D = cv2_pts2ds.reshape((-1, 2))

            success, r_pose, t_pose, _ = cv2.solvePnPRansac(pts3D, pts2D, K, None, flags=cv2.SOLVEPNP_SQPNP,
                                                            iterationsCount=iterationsCount,
                                                            reprojectionError=reprojectionError,
                                                            confidence=confidence)
            if not success:
                return False, None
            r_pose = cv2.Rodrigues(r_pose)[0]  # world2cam == world2cam2
            RT = np.r_[np.c_[r_pose, t_pose], [(0,0,0,1)]] # world2cam2
            return True, np.linalg.inv(RT)  # cam2toworld
        elif len(pts2D) > 4 and mode == "poselib":
            assert HAS_POSELIB
            confidence = 0.9999
            iterationsCount = 10_000
            # NOTE: `Camera` struct currently contains `width`/`height` fields,
            # however these are not used anywhere in the code-base and are provided simply to be consistent with COLMAP.
            # so we put garbage in there
            colmap_intrinsics = opencv_to_colmap_intrinsics(K)
            fx = colmap_intrinsics[0, 0]
            fy = colmap_intrinsics[1, 1]
            cx = colmap_intrinsics[0, 2]
            cy = colmap_intrinsics[1, 2]
            width = img_size[0] if img_size is not None else int(cx*2)
            height = img_size[1] if img_size is not None else int(cy*2)

            if distortion is None:
                camera = {'model': 'PINHOLE', 'width': width, 'height': height, 'params': [fx, fy, cx, cy]}
            else:
                camera = {'model': 'OPENCV', 'width': width, 'height': height,
                          'params': [fx, fy, cx, cy] + distortion}
            
            pts2D = np.copy(pts2D)
            pts2D[:, 0] += 0.5
            pts2D[:, 1] += 0.5
            pose, _ = poselib.estimate_absolute_pose(pts2D, pts3D, camera,
                                                        {'max_reproj_error': reprojectionError,
                                                        'max_iterations': iterationsCount,
                                                        'success_prob': confidence}, {})
            if pose is None:
                return False, None
            RT = pose.Rt  # (3x4)
            RT = np.r_[RT, [(0,0,0,1)]]  # world2cam
            return True, np.linalg.inv(RT)  # cam2toworld
        elif len(pts2D) > 4 and mode == "pycolmap":
            assert HAS_PYCOLMAP
            assert img_size is not None
            
            pts2D = np.copy(pts2D)
            pts2D[:, 0] += 0.5
            pts2D[:, 1] += 0.5
            colmap_intrinsics = opencv_to_colmap_intrinsics(K)
            fx = colmap_intrinsics[0, 0]
            fy = colmap_intrinsics[1, 1]
            cx = colmap_intrinsics[0, 2]
            cy = colmap_intrinsics[1, 2]
            width = img_size[0]
            height = img_size[1]
            if distortion is None:
                camera_dict = {'model': 'PINHOLE', 'width': width, 'height': height, 'params': [fx, fy, cx, cy]}
            else:
                camera_dict = {'model': 'OPENCV', 'width': width, 'height': height,
                               'params': [fx, fy, cx, cy] + distortion}

            pycolmap_camera = pycolmap.Camera(
            model=camera_dict['model'], width=camera_dict['width'], height=camera_dict['height'],
            params=camera_dict['params'])

            pycolmap_estimation_options = dict(ransac=dict(max_error=reprojectionError, min_inlier_ratio=0.01,
                                               min_num_trials=1000, max_num_trials=100000,
                                            confidence=0.9999))
            pycolmap_refinement_options=dict(refine_focal_length=False, refine_extra_params=False)
            ret = pycolmap.absolute_pose_estimation(pts2D, pts3D, pycolmap_camera,
                                                    estimation_options=pycolmap_estimation_options,
                                                    refinement_options=pycolmap_refinement_options)
            if ret is None:
                ret = {'success': False}
            else:
                ret['success'] = True
                if callable(ret['cam_from_world'].matrix):
                    retmat = ret['cam_from_world'].matrix()
                else:
                    retmat = ret['cam_from_world'].matrix
                ret['qvec'] = quaternion.from_rotation_matrix(retmat[:3, :3])
                ret['tvec'] = retmat[:3, 3]
                
            if not (ret['success'] and ret['num_inliers'] > 0):
                success = False
                pose = None
            else:
                success = True
                pr_world_to_querycam = np.r_[ret['cam_from_world'].matrix(), [(0,0,0,1)]]
                pose = np.linalg.inv(pr_world_to_querycam)
            return success, pose
        else:
            return False, None
    except Exception as e:
        print(f'error during pnp: {e}')
        return False, None