Spaces:
Running
Running
File size: 9,058 Bytes
10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
"""
Inference model of SuperPoint, a feature detector and descriptor.
Described in:
SuperPoint: Self-Supervised Interest Point Detection and Description,
Daniel DeTone, Tomasz Malisiewicz, Andrew Rabinovich, CVPRW 2018.
Original code: github.com/MagicLeapResearch/SuperPointPretrainedNetwork
"""
import torch
from torch import nn
from .. import GLUESTICK_ROOT
from ..models.base_model import BaseModel
def simple_nms(scores, radius):
"""Perform non maximum suppression on the heatmap using max-pooling.
This method does not suppress contiguous points that have the same score.
Args:
scores: the score heatmap of size `(B, H, W)`.
size: an interger scalar, the radius of the NMS window.
"""
def max_pool(x):
return torch.nn.functional.max_pool2d(
x, kernel_size=radius * 2 + 1, stride=1, padding=radius
)
zeros = torch.zeros_like(scores)
max_mask = scores == max_pool(scores)
for _ in range(2):
supp_mask = max_pool(max_mask.float()) > 0
supp_scores = torch.where(supp_mask, zeros, scores)
new_max_mask = supp_scores == max_pool(supp_scores)
max_mask = max_mask | (new_max_mask & (~supp_mask))
return torch.where(max_mask, scores, zeros)
def remove_borders(keypoints, scores, b, h, w):
mask_h = (keypoints[:, 0] >= b) & (keypoints[:, 0] < (h - b))
mask_w = (keypoints[:, 1] >= b) & (keypoints[:, 1] < (w - b))
mask = mask_h & mask_w
return keypoints[mask], scores[mask]
def top_k_keypoints(keypoints, scores, k):
if k >= len(keypoints):
return keypoints, scores
scores, indices = torch.topk(scores, k, dim=0, sorted=True)
return keypoints[indices], scores
def sample_descriptors(keypoints, descriptors, s):
b, c, h, w = descriptors.shape
keypoints = keypoints - s / 2 + 0.5
keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],).to(
keypoints
)[None]
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
args = {"align_corners": True} if torch.__version__ >= "1.3" else {}
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", **args
)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1
)
return descriptors
class SuperPoint(BaseModel):
default_conf = {
"has_detector": True,
"has_descriptor": True,
"descriptor_dim": 256,
# Inference
"return_all": False,
"sparse_outputs": True,
"nms_radius": 4,
"detection_threshold": 0.005,
"max_num_keypoints": -1,
"force_num_keypoints": False,
"remove_borders": 4,
}
required_data_keys = ["image"]
def _init(self, conf):
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256
self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)
if conf.has_detector:
self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0)
if conf.has_descriptor:
self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
self.convDb = nn.Conv2d(
c5, conf.descriptor_dim, kernel_size=1, stride=1, padding=0
)
path = GLUESTICK_ROOT / "resources" / "weights" / "superpoint_v1.pth"
self.load_state_dict(torch.load(str(path)), strict=False)
def _forward(self, data):
image = data["image"]
if image.shape[1] == 3: # RGB
scale = image.new_tensor([0.299, 0.587, 0.114]).view(1, 3, 1, 1)
image = (image * scale).sum(1, keepdim=True)
# Shared Encoder
x = self.relu(self.conv1a(image))
x = self.relu(self.conv1b(x))
x = self.pool(x)
x = self.relu(self.conv2a(x))
x = self.relu(self.conv2b(x))
x = self.pool(x)
x = self.relu(self.conv3a(x))
x = self.relu(self.conv3b(x))
x = self.pool(x)
x = self.relu(self.conv4a(x))
x = self.relu(self.conv4b(x))
pred = {}
if self.conf.has_detector and self.conf.max_num_keypoints != 0:
# Compute the dense keypoint scores
cPa = self.relu(self.convPa(x))
scores = self.convPb(cPa)
scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
b, c, h, w = scores.shape
scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
pred["keypoint_scores"] = dense_scores = scores
if self.conf.has_descriptor:
# Compute the dense descriptors
cDa = self.relu(self.convDa(x))
all_desc = self.convDb(cDa)
all_desc = torch.nn.functional.normalize(all_desc, p=2, dim=1)
pred["descriptors"] = all_desc
if self.conf.max_num_keypoints == 0: # Predict dense descriptors only
b_size = len(image)
device = image.device
return {
"keypoints": torch.empty(b_size, 0, 2, device=device),
"keypoint_scores": torch.empty(b_size, 0, device=device),
"descriptors": torch.empty(
b_size, self.conf.descriptor_dim, 0, device=device
),
"all_descriptors": all_desc,
}
if self.conf.sparse_outputs:
assert self.conf.has_detector and self.conf.has_descriptor
scores = simple_nms(scores, self.conf.nms_radius)
# Extract keypoints
keypoints = [
torch.nonzero(s > self.conf.detection_threshold) for s in scores
]
scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]
# Discard keypoints near the image borders
keypoints, scores = list(
zip(
*[
remove_borders(k, s, self.conf.remove_borders, h * 8, w * 8)
for k, s in zip(keypoints, scores)
]
)
)
# Keep the k keypoints with highest score
if self.conf.max_num_keypoints > 0:
keypoints, scores = list(
zip(
*[
top_k_keypoints(k, s, self.conf.max_num_keypoints)
for k, s in zip(keypoints, scores)
]
)
)
# Convert (h, w) to (x, y)
keypoints = [torch.flip(k, [1]).float() for k in keypoints]
if self.conf.force_num_keypoints:
_, _, h, w = data["image"].shape
assert self.conf.max_num_keypoints > 0
scores = list(scores)
for i in range(len(keypoints)):
k, s = keypoints[i], scores[i]
missing = self.conf.max_num_keypoints - len(k)
if missing > 0:
new_k = torch.rand(missing, 2).to(k)
new_k = new_k * k.new_tensor([[w - 1, h - 1]])
new_s = torch.zeros(missing).to(s)
keypoints[i] = torch.cat([k, new_k], 0)
scores[i] = torch.cat([s, new_s], 0)
# Extract descriptors
desc = [
sample_descriptors(k[None], d[None], 8)[0]
for k, d in zip(keypoints, all_desc)
]
if (len(keypoints) == 1) or self.conf.force_num_keypoints:
keypoints = torch.stack(keypoints, 0)
scores = torch.stack(scores, 0)
desc = torch.stack(desc, 0)
pred = {
"keypoints": keypoints,
"keypoint_scores": scores,
"descriptors": desc,
}
if self.conf.return_all:
pred["all_descriptors"] = all_desc
pred["dense_score"] = dense_scores
else:
del all_desc
torch.cuda.empty_cache()
return pred
def loss(self, pred, data):
raise NotImplementedError
def metrics(self, pred, data):
raise NotImplementedError
|