File size: 9,058 Bytes
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
358ab8f
10b4a5f
358ab8f
 
10b4a5f
358ab8f
 
10b4a5f
 
 
 
 
358ab8f
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
10b4a5f
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
358ab8f
10b4a5f
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
358ab8f
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
358ab8f
 
 
 
 
 
 
 
10b4a5f
 
 
358ab8f
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
10b4a5f
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""
Inference model of SuperPoint, a feature detector and descriptor.

Described in:
    SuperPoint: Self-Supervised Interest Point Detection and Description,
    Daniel DeTone, Tomasz Malisiewicz, Andrew Rabinovich, CVPRW 2018.

Original code: github.com/MagicLeapResearch/SuperPointPretrainedNetwork
"""

import torch
from torch import nn

from .. import GLUESTICK_ROOT
from ..models.base_model import BaseModel


def simple_nms(scores, radius):
    """Perform non maximum suppression on the heatmap using max-pooling.
    This method does not suppress contiguous points that have the same score.
    Args:
        scores: the score heatmap of size `(B, H, W)`.
        size: an interger scalar, the radius of the NMS window.
    """

    def max_pool(x):
        return torch.nn.functional.max_pool2d(
            x, kernel_size=radius * 2 + 1, stride=1, padding=radius
        )

    zeros = torch.zeros_like(scores)
    max_mask = scores == max_pool(scores)
    for _ in range(2):
        supp_mask = max_pool(max_mask.float()) > 0
        supp_scores = torch.where(supp_mask, zeros, scores)
        new_max_mask = supp_scores == max_pool(supp_scores)
        max_mask = max_mask | (new_max_mask & (~supp_mask))
    return torch.where(max_mask, scores, zeros)


def remove_borders(keypoints, scores, b, h, w):
    mask_h = (keypoints[:, 0] >= b) & (keypoints[:, 0] < (h - b))
    mask_w = (keypoints[:, 1] >= b) & (keypoints[:, 1] < (w - b))
    mask = mask_h & mask_w
    return keypoints[mask], scores[mask]


def top_k_keypoints(keypoints, scores, k):
    if k >= len(keypoints):
        return keypoints, scores
    scores, indices = torch.topk(scores, k, dim=0, sorted=True)
    return keypoints[indices], scores


def sample_descriptors(keypoints, descriptors, s):
    b, c, h, w = descriptors.shape
    keypoints = keypoints - s / 2 + 0.5
    keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],).to(
        keypoints
    )[None]
    keypoints = keypoints * 2 - 1  # normalize to (-1, 1)
    args = {"align_corners": True} if torch.__version__ >= "1.3" else {}
    descriptors = torch.nn.functional.grid_sample(
        descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", **args
    )
    descriptors = torch.nn.functional.normalize(
        descriptors.reshape(b, c, -1), p=2, dim=1
    )
    return descriptors


class SuperPoint(BaseModel):
    default_conf = {
        "has_detector": True,
        "has_descriptor": True,
        "descriptor_dim": 256,
        # Inference
        "return_all": False,
        "sparse_outputs": True,
        "nms_radius": 4,
        "detection_threshold": 0.005,
        "max_num_keypoints": -1,
        "force_num_keypoints": False,
        "remove_borders": 4,
    }
    required_data_keys = ["image"]

    def _init(self, conf):
        self.relu = nn.ReLU(inplace=True)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256

        self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
        self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
        self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
        self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
        self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
        self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
        self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
        self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)

        if conf.has_detector:
            self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
            self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0)

        if conf.has_descriptor:
            self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
            self.convDb = nn.Conv2d(
                c5, conf.descriptor_dim, kernel_size=1, stride=1, padding=0
            )

        path = GLUESTICK_ROOT / "resources" / "weights" / "superpoint_v1.pth"
        self.load_state_dict(torch.load(str(path)), strict=False)

    def _forward(self, data):
        image = data["image"]
        if image.shape[1] == 3:  # RGB
            scale = image.new_tensor([0.299, 0.587, 0.114]).view(1, 3, 1, 1)
            image = (image * scale).sum(1, keepdim=True)

        # Shared Encoder
        x = self.relu(self.conv1a(image))
        x = self.relu(self.conv1b(x))
        x = self.pool(x)
        x = self.relu(self.conv2a(x))
        x = self.relu(self.conv2b(x))
        x = self.pool(x)
        x = self.relu(self.conv3a(x))
        x = self.relu(self.conv3b(x))
        x = self.pool(x)
        x = self.relu(self.conv4a(x))
        x = self.relu(self.conv4b(x))

        pred = {}
        if self.conf.has_detector and self.conf.max_num_keypoints != 0:
            # Compute the dense keypoint scores
            cPa = self.relu(self.convPa(x))
            scores = self.convPb(cPa)
            scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
            b, c, h, w = scores.shape
            scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
            scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
            pred["keypoint_scores"] = dense_scores = scores
        if self.conf.has_descriptor:
            # Compute the dense descriptors
            cDa = self.relu(self.convDa(x))
            all_desc = self.convDb(cDa)
            all_desc = torch.nn.functional.normalize(all_desc, p=2, dim=1)
            pred["descriptors"] = all_desc

            if self.conf.max_num_keypoints == 0:  # Predict dense descriptors only
                b_size = len(image)
                device = image.device
                return {
                    "keypoints": torch.empty(b_size, 0, 2, device=device),
                    "keypoint_scores": torch.empty(b_size, 0, device=device),
                    "descriptors": torch.empty(
                        b_size, self.conf.descriptor_dim, 0, device=device
                    ),
                    "all_descriptors": all_desc,
                }

        if self.conf.sparse_outputs:
            assert self.conf.has_detector and self.conf.has_descriptor

            scores = simple_nms(scores, self.conf.nms_radius)

            # Extract keypoints
            keypoints = [
                torch.nonzero(s > self.conf.detection_threshold) for s in scores
            ]
            scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)]

            # Discard keypoints near the image borders
            keypoints, scores = list(
                zip(
                    *[
                        remove_borders(k, s, self.conf.remove_borders, h * 8, w * 8)
                        for k, s in zip(keypoints, scores)
                    ]
                )
            )

            # Keep the k keypoints with highest score
            if self.conf.max_num_keypoints > 0:
                keypoints, scores = list(
                    zip(
                        *[
                            top_k_keypoints(k, s, self.conf.max_num_keypoints)
                            for k, s in zip(keypoints, scores)
                        ]
                    )
                )

            # Convert (h, w) to (x, y)
            keypoints = [torch.flip(k, [1]).float() for k in keypoints]

            if self.conf.force_num_keypoints:
                _, _, h, w = data["image"].shape
                assert self.conf.max_num_keypoints > 0
                scores = list(scores)
                for i in range(len(keypoints)):
                    k, s = keypoints[i], scores[i]
                    missing = self.conf.max_num_keypoints - len(k)
                    if missing > 0:
                        new_k = torch.rand(missing, 2).to(k)
                        new_k = new_k * k.new_tensor([[w - 1, h - 1]])
                        new_s = torch.zeros(missing).to(s)
                        keypoints[i] = torch.cat([k, new_k], 0)
                        scores[i] = torch.cat([s, new_s], 0)

            # Extract descriptors
            desc = [
                sample_descriptors(k[None], d[None], 8)[0]
                for k, d in zip(keypoints, all_desc)
            ]

            if (len(keypoints) == 1) or self.conf.force_num_keypoints:
                keypoints = torch.stack(keypoints, 0)
                scores = torch.stack(scores, 0)
                desc = torch.stack(desc, 0)

            pred = {
                "keypoints": keypoints,
                "keypoint_scores": scores,
                "descriptors": desc,
            }

            if self.conf.return_all:
                pred["all_descriptors"] = all_desc
                pred["dense_score"] = dense_scores
            else:
                del all_desc
                torch.cuda.empty_cache()

        return pred

    def loss(self, pred, data):
        raise NotImplementedError

    def metrics(self, pred, data):
        raise NotImplementedError