File size: 4,228 Bytes
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
10b4a5f
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
358ab8f
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
10b4a5f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import os
from os.path import join

import cv2
import torch
from matplotlib import pyplot as plt

from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT
from .drawing import (
    plot_images,
    plot_lines,
    plot_color_line_matches,
    plot_keypoints,
    plot_matches,
)
from .models.two_view_pipeline import TwoViewPipeline


def main():
    # Parse input parameters
    parser = argparse.ArgumentParser(
        prog="GlueStick Demo",
        description="Demo app to show the point and line matches obtained by GlueStick",
    )
    parser.add_argument("-img1", default=join("resources" + os.path.sep + "img1.jpg"))
    parser.add_argument("-img2", default=join("resources" + os.path.sep + "img2.jpg"))
    parser.add_argument("--max_pts", type=int, default=1000)
    parser.add_argument("--max_lines", type=int, default=300)
    parser.add_argument("--skip-imshow", default=False, action="store_true")
    args = parser.parse_args()

    # Evaluation config
    conf = {
        "name": "two_view_pipeline",
        "use_lines": True,
        "extractor": {
            "name": "wireframe",
            "sp_params": {
                "force_num_keypoints": False,
                "max_num_keypoints": args.max_pts,
            },
            "wireframe_params": {
                "merge_points": True,
                "merge_line_endpoints": True,
            },
            "max_n_lines": args.max_lines,
        },
        "matcher": {
            "name": "gluestick",
            "weights": str(
                GLUESTICK_ROOT / "resources" / "weights" / "checkpoint_GlueStick_MD.tar"
            ),
            "trainable": False,
        },
        "ground_truth": {
            "from_pose_depth": False,
        },
    }

    device = "cuda" if torch.cuda.is_available() else "cpu"

    pipeline_model = TwoViewPipeline(conf).to(device).eval()

    gray0 = cv2.imread(args.img1, 0)
    gray1 = cv2.imread(args.img2, 0)

    torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1)
    torch_gray0, torch_gray1 = (
        torch_gray0.to(device)[None],
        torch_gray1.to(device)[None],
    )
    x = {"image0": torch_gray0, "image1": torch_gray1}
    pred = pipeline_model(x)

    pred = batch_to_np(pred)
    kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
    m0 = pred["matches0"]

    line_seg0, line_seg1 = pred["lines0"], pred["lines1"]
    line_matches = pred["line_matches0"]

    valid_matches = m0 != -1
    match_indices = m0[valid_matches]
    matched_kps0 = kp0[valid_matches]
    matched_kps1 = kp1[match_indices]

    valid_matches = line_matches != -1
    match_indices = line_matches[valid_matches]
    matched_lines0 = line_seg0[valid_matches]
    matched_lines1 = line_seg1[match_indices]

    # Plot the matches
    img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(
        gray1, cv2.COLOR_GRAY2BGR
    )
    plot_images(
        [img0, img1],
        ["Image 1 - detected lines", "Image 2 - detected lines"],
        dpi=200,
        pad=2.0,
    )
    plot_lines([line_seg0, line_seg1], ps=4, lw=2)
    plt.gcf().canvas.manager.set_window_title("Detected Lines")
    plt.savefig("detected_lines.png")

    plot_images(
        [img0, img1],
        ["Image 1 - detected points", "Image 2 - detected points"],
        dpi=200,
        pad=2.0,
    )
    plot_keypoints([kp0, kp1], colors="c")
    plt.gcf().canvas.manager.set_window_title("Detected Points")
    plt.savefig("detected_points.png")

    plot_images(
        [img0, img1],
        ["Image 1 - line matches", "Image 2 - line matches"],
        dpi=200,
        pad=2.0,
    )
    plot_color_line_matches([matched_lines0, matched_lines1], lw=2)
    plt.gcf().canvas.manager.set_window_title("Line Matches")
    plt.savefig("line_matches.png")

    plot_images(
        [img0, img1],
        ["Image 1 - point matches", "Image 2 - point matches"],
        dpi=200,
        pad=2.0,
    )
    plot_matches(matched_kps0, matched_kps1, "green", lw=1, ps=0)
    plt.gcf().canvas.manager.set_window_title("Point Matches")
    plt.savefig("detected_points.png")
    if not args.skip_imshow:
        plt.show()


if __name__ == "__main__":
    main()