File size: 16,996 Bytes
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
358ab8f
10b4a5f
358ab8f
 
10b4a5f
 
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
 
 
 
 
358ab8f
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
358ab8f
10b4a5f
358ab8f
10b4a5f
 
358ab8f
10b4a5f
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
358ab8f
 
10b4a5f
 
358ab8f
 
 
 
 
10b4a5f
 
 
 
 
358ab8f
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
"""
Implementation of the line matching methods.
"""
import numpy as np
import cv2
import torch
import torch.nn.functional as F

from ..misc.geometry_utils import keypoints_to_grid


class WunschLineMatcher(object):
    """Class matching two sets of line segments
    with the Needleman-Wunsch algorithm."""

    def __init__(
        self,
        cross_check=True,
        num_samples=10,
        min_dist_pts=8,
        top_k_candidates=10,
        grid_size=8,
        sampling="regular",
        line_score=False,
    ):
        self.cross_check = cross_check
        self.num_samples = num_samples
        self.min_dist_pts = min_dist_pts
        self.top_k_candidates = top_k_candidates
        self.grid_size = grid_size
        self.line_score = line_score  # True to compute saliency on a line
        self.sampling_mode = sampling
        if sampling not in ["regular", "d2_net", "asl_feat"]:
            raise ValueError("Wrong sampling mode: " + sampling)

    def forward(self, line_seg1, line_seg2, desc1, desc2):
        """
        Find the best matches between two sets of line segments
        and their corresponding descriptors.
        """
        img_size1 = (desc1.shape[2] * self.grid_size, desc1.shape[3] * self.grid_size)
        img_size2 = (desc2.shape[2] * self.grid_size, desc2.shape[3] * self.grid_size)
        device = desc1.device

        # Default case when an image has no lines
        if len(line_seg1) == 0:
            return np.empty((0), dtype=int)
        if len(line_seg2) == 0:
            return -np.ones(len(line_seg1), dtype=int)

        # Sample points regularly along each line
        if self.sampling_mode == "regular":
            line_points1, valid_points1 = self.sample_line_points(line_seg1)
            line_points2, valid_points2 = self.sample_line_points(line_seg2)
        else:
            line_points1, valid_points1 = self.sample_salient_points(
                line_seg1, desc1, img_size1, self.sampling_mode
            )
            line_points2, valid_points2 = self.sample_salient_points(
                line_seg2, desc2, img_size2, self.sampling_mode
            )
        line_points1 = torch.tensor(
            line_points1.reshape(-1, 2), dtype=torch.float, device=device
        )
        line_points2 = torch.tensor(
            line_points2.reshape(-1, 2), dtype=torch.float, device=device
        )

        # Extract the descriptors for each point
        grid1 = keypoints_to_grid(line_points1, img_size1)
        grid2 = keypoints_to_grid(line_points2, img_size2)
        desc1 = F.normalize(F.grid_sample(desc1, grid1)[0, :, :, 0], dim=0)
        desc2 = F.normalize(F.grid_sample(desc2, grid2)[0, :, :, 0], dim=0)

        # Precompute the distance between line points for every pair of lines
        # Assign a score of -1 for unvalid points
        scores = desc1.t() @ desc2
        scores[~valid_points1.flatten()] = -1
        scores[:, ~valid_points2.flatten()] = -1
        scores = scores.reshape(
            len(line_seg1), self.num_samples, len(line_seg2), self.num_samples
        )
        scores = scores.permute(0, 2, 1, 3)
        # scores.shape = (n_lines1, n_lines2, num_samples, num_samples)

        # Pre-filter the line candidates and find the best match for each line
        matches = self.filter_and_match_lines(scores)

        # [Optionally] filter matches with mutual nearest neighbor filtering
        if self.cross_check:
            matches2 = self.filter_and_match_lines(scores.permute(1, 0, 3, 2))
            mutual = matches2[matches] == np.arange(len(line_seg1))
            matches[~mutual] = -1

        return matches

    def d2_net_saliency_score(self, desc):
        """Compute the D2-Net saliency score
        on a 3D or 4D descriptor."""
        is_3d = len(desc.shape) == 3
        b_size = len(desc)
        feat = F.relu(desc)

        # Compute the soft local max
        exp = torch.exp(feat)
        if is_3d:
            sum_exp = 3 * F.avg_pool1d(exp, kernel_size=3, stride=1, padding=1)
        else:
            sum_exp = 9 * F.avg_pool2d(exp, kernel_size=3, stride=1, padding=1)
        soft_local_max = exp / sum_exp

        # Compute the depth-wise maximum
        depth_wise_max = torch.max(feat, dim=1)[0]
        depth_wise_max = feat / depth_wise_max.unsqueeze(1)

        # Total saliency score
        score = torch.max(soft_local_max * depth_wise_max, dim=1)[0]
        normalization = torch.sum(score.reshape(b_size, -1), dim=1)
        if is_3d:
            normalization = normalization.reshape(b_size, 1)
        else:
            normalization = normalization.reshape(b_size, 1, 1)
        score = score / normalization
        return score

    def asl_feat_saliency_score(self, desc):
        """Compute the ASLFeat saliency score on a 3D or 4D descriptor."""
        is_3d = len(desc.shape) == 3
        b_size = len(desc)

        # Compute the soft local peakiness
        if is_3d:
            local_avg = F.avg_pool1d(desc, kernel_size=3, stride=1, padding=1)
        else:
            local_avg = F.avg_pool2d(desc, kernel_size=3, stride=1, padding=1)
        soft_local_score = F.softplus(desc - local_avg)

        # Compute the depth-wise peakiness
        depth_wise_mean = torch.mean(desc, dim=1).unsqueeze(1)
        depth_wise_score = F.softplus(desc - depth_wise_mean)

        # Total saliency score
        score = torch.max(soft_local_score * depth_wise_score, dim=1)[0]
        normalization = torch.sum(score.reshape(b_size, -1), dim=1)
        if is_3d:
            normalization = normalization.reshape(b_size, 1)
        else:
            normalization = normalization.reshape(b_size, 1, 1)
        score = score / normalization
        return score

    def sample_salient_points(self, line_seg, desc, img_size, saliency_type="d2_net"):
        """
        Sample the most salient points along each line segments, with a
        minimal distance between each point. Pad the remaining points.
        Inputs:
            line_seg: an Nx2x2 torch.Tensor.
            desc: a NxDxHxW torch.Tensor.
            image_size: the original image size.
            saliency_type: 'd2_net' or 'asl_feat'.
        Outputs:
            line_points: an Nxnum_samplesx2 np.array.
            valid_points: a boolean Nxnum_samples np.array.
        """
        device = desc.device
        if not self.line_score:
            # Compute the score map
            if saliency_type == "d2_net":
                score = self.d2_net_saliency_score(desc)
            else:
                score = self.asl_feat_saliency_score(desc)

        num_lines = len(line_seg)
        line_lengths = np.linalg.norm(line_seg[:, 0] - line_seg[:, 1], axis=1)

        # The number of samples depends on the length of the line
        num_samples_lst = np.clip(
            line_lengths // self.min_dist_pts, 2, self.num_samples
        )
        line_points = np.empty((num_lines, self.num_samples, 2), dtype=float)
        valid_points = np.empty((num_lines, self.num_samples), dtype=bool)

        # Sample the score on a fixed number of points of each line
        n_samples_per_region = 4
        for n in np.arange(2, self.num_samples + 1):
            sample_rate = n * n_samples_per_region
            # Consider all lines where we can fit up to n points
            cur_mask = num_samples_lst == n
            cur_line_seg = line_seg[cur_mask]
            cur_num_lines = len(cur_line_seg)
            if cur_num_lines == 0:
                continue
            line_points_x = np.linspace(
                cur_line_seg[:, 0, 0], cur_line_seg[:, 1, 0], sample_rate, axis=-1
            )
            line_points_y = np.linspace(
                cur_line_seg[:, 0, 1], cur_line_seg[:, 1, 1], sample_rate, axis=-1
            )
            cur_line_points = np.stack([line_points_x, line_points_y], axis=-1).reshape(
                -1, 2
            )
            # cur_line_points is of shape (n_cur_lines * sample_rate, 2)
            cur_line_points = torch.tensor(
                cur_line_points, dtype=torch.float, device=device
            )
            grid_points = keypoints_to_grid(cur_line_points, img_size)

            if self.line_score:
                # The saliency score is high when the activation are locally
                # maximal along the line (and not in a square neigborhood)
                line_desc = F.grid_sample(desc, grid_points).squeeze()
                line_desc = line_desc.reshape(-1, cur_num_lines, sample_rate)
                line_desc = line_desc.permute(1, 0, 2)
                if saliency_type == "d2_net":
                    scores = self.d2_net_saliency_score(line_desc)
                else:
                    scores = self.asl_feat_saliency_score(line_desc)
            else:
                scores = F.grid_sample(score.unsqueeze(1), grid_points).squeeze()

            # Take the most salient point in n distinct regions
            scores = scores.reshape(-1, n, n_samples_per_region)
            best = torch.max(scores, dim=2, keepdim=True)[1].cpu().numpy()
            cur_line_points = cur_line_points.reshape(-1, n, n_samples_per_region, 2)
            cur_line_points = np.take_along_axis(
                cur_line_points, best[..., None], axis=2
            )[:, :, 0]

            # Pad
            cur_valid_points = np.ones((cur_num_lines, self.num_samples), dtype=bool)
            cur_valid_points[:, n:] = False
            cur_line_points = np.concatenate(
                [
                    cur_line_points,
                    np.zeros((cur_num_lines, self.num_samples - n, 2), dtype=float),
                ],
                axis=1,
            )

            line_points[cur_mask] = cur_line_points
            valid_points[cur_mask] = cur_valid_points

        return line_points, valid_points

    def sample_line_points(self, line_seg):
        """
        Regularly sample points along each line segments, with a minimal
        distance between each point. Pad the remaining points.
        Inputs:
            line_seg: an Nx2x2 torch.Tensor.
        Outputs:
            line_points: an Nxnum_samplesx2 np.array.
            valid_points: a boolean Nxnum_samples np.array.
        """
        num_lines = len(line_seg)
        line_lengths = np.linalg.norm(line_seg[:, 0] - line_seg[:, 1], axis=1)

        # Sample the points separated by at least min_dist_pts along each line
        # The number of samples depends on the length of the line
        num_samples_lst = np.clip(
            line_lengths // self.min_dist_pts, 2, self.num_samples
        )
        line_points = np.empty((num_lines, self.num_samples, 2), dtype=float)
        valid_points = np.empty((num_lines, self.num_samples), dtype=bool)
        for n in np.arange(2, self.num_samples + 1):
            # Consider all lines where we can fit up to n points
            cur_mask = num_samples_lst == n
            cur_line_seg = line_seg[cur_mask]
            line_points_x = np.linspace(
                cur_line_seg[:, 0, 0], cur_line_seg[:, 1, 0], n, axis=-1
            )
            line_points_y = np.linspace(
                cur_line_seg[:, 0, 1], cur_line_seg[:, 1, 1], n, axis=-1
            )
            cur_line_points = np.stack([line_points_x, line_points_y], axis=-1)

            # Pad
            cur_num_lines = len(cur_line_seg)
            cur_valid_points = np.ones((cur_num_lines, self.num_samples), dtype=bool)
            cur_valid_points[:, n:] = False
            cur_line_points = np.concatenate(
                [
                    cur_line_points,
                    np.zeros((cur_num_lines, self.num_samples - n, 2), dtype=float),
                ],
                axis=1,
            )

            line_points[cur_mask] = cur_line_points
            valid_points[cur_mask] = cur_valid_points

        return line_points, valid_points

    def filter_and_match_lines(self, scores):
        """
        Use the scores to keep the top k best lines, compute the Needleman-
        Wunsch algorithm on each candidate pairs, and keep the highest score.
        Inputs:
            scores: a (N, M, n, n) torch.Tensor containing the pairwise scores
                    of the elements to match.
        Outputs:
            matches: a (N) np.array containing the indices of the best match
        """
        # Pre-filter the pairs and keep the top k best candidate lines
        line_scores1 = scores.max(3)[0]
        valid_scores1 = line_scores1 != -1
        line_scores1 = (line_scores1 * valid_scores1).sum(2) / valid_scores1.sum(2)
        line_scores2 = scores.max(2)[0]
        valid_scores2 = line_scores2 != -1
        line_scores2 = (line_scores2 * valid_scores2).sum(2) / valid_scores2.sum(2)
        line_scores = (line_scores1 + line_scores2) / 2
        topk_lines = torch.argsort(line_scores, dim=1)[:, -self.top_k_candidates :]
        scores, topk_lines = scores.cpu().numpy(), topk_lines.cpu().numpy()
        # topk_lines.shape = (n_lines1, top_k_candidates)
        top_scores = np.take_along_axis(scores, topk_lines[:, :, None, None], axis=1)

        # Consider the reversed line segments as well
        top_scores = np.concatenate([top_scores, top_scores[..., ::-1]], axis=1)

        # Compute the line distance matrix with Needleman-Wunsch algo and
        # retrieve the closest line neighbor
        n_lines1, top2k, n, m = top_scores.shape
        top_scores = top_scores.reshape(n_lines1 * top2k, n, m)
        nw_scores = self.needleman_wunsch(top_scores)
        nw_scores = nw_scores.reshape(n_lines1, top2k)
        matches = np.mod(np.argmax(nw_scores, axis=1), top2k // 2)
        matches = topk_lines[np.arange(n_lines1), matches]
        return matches

    def needleman_wunsch(self, scores):
        """
        Batched implementation of the Needleman-Wunsch algorithm.
        The cost of the InDel operation is set to 0 by subtracting the gap
        penalty to the scores.
        Inputs:
            scores: a (B, N, M) np.array containing the pairwise scores
                    of the elements to match.
        """
        b, n, m = scores.shape

        # Recalibrate the scores to get a gap score of 0
        gap = 0.1
        nw_scores = scores - gap

        # Run the dynamic programming algorithm
        nw_grid = np.zeros((b, n + 1, m + 1), dtype=float)
        for i in range(n):
            for j in range(m):
                nw_grid[:, i + 1, j + 1] = np.maximum(
                    np.maximum(nw_grid[:, i + 1, j], nw_grid[:, i, j + 1]),
                    nw_grid[:, i, j] + nw_scores[:, i, j],
                )

        return nw_grid[:, -1, -1]

    def get_pairwise_distance(self, line_seg1, line_seg2, desc1, desc2):
        """
        Compute the OPPOSITE of the NW score for pairs of line segments
        and their corresponding descriptors.
        """
        num_lines = len(line_seg1)
        assert num_lines == len(
            line_seg2
        ), "The same number of lines is required in pairwise score."
        img_size1 = (desc1.shape[2] * self.grid_size, desc1.shape[3] * self.grid_size)
        img_size2 = (desc2.shape[2] * self.grid_size, desc2.shape[3] * self.grid_size)
        device = desc1.device

        # Sample points regularly along each line
        line_points1, valid_points1 = self.sample_line_points(line_seg1)
        line_points2, valid_points2 = self.sample_line_points(line_seg2)
        line_points1 = torch.tensor(
            line_points1.reshape(-1, 2), dtype=torch.float, device=device
        )
        line_points2 = torch.tensor(
            line_points2.reshape(-1, 2), dtype=torch.float, device=device
        )

        # Extract the descriptors for each point
        grid1 = keypoints_to_grid(line_points1, img_size1)
        grid2 = keypoints_to_grid(line_points2, img_size2)
        desc1 = F.normalize(F.grid_sample(desc1, grid1)[0, :, :, 0], dim=0)
        desc1 = desc1.reshape(-1, num_lines, self.num_samples)
        desc2 = F.normalize(F.grid_sample(desc2, grid2)[0, :, :, 0], dim=0)
        desc2 = desc2.reshape(-1, num_lines, self.num_samples)

        # Compute the distance between line points for every pair of lines
        # Assign a score of -1 for unvalid points
        scores = torch.einsum("dns,dnt->nst", desc1, desc2).cpu().numpy()
        scores = scores.reshape(num_lines * self.num_samples, self.num_samples)
        scores[~valid_points1.flatten()] = -1
        scores = scores.reshape(num_lines, self.num_samples, self.num_samples)
        scores = scores.transpose(1, 0, 2).reshape(self.num_samples, -1)
        scores[:, ~valid_points2.flatten()] = -1
        scores = scores.reshape(self.num_samples, num_lines, self.num_samples)
        scores = scores.transpose(1, 0, 2)
        # scores.shape = (num_lines, num_samples, num_samples)

        # Compute the NW score for each pair of lines
        pairwise_scores = np.array([self.needleman_wunsch(s) for s in scores])
        return -pairwise_scores