File size: 15,361 Bytes
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
358ab8f
10b4a5f
 
358ab8f
 
10b4a5f
 
 
 
358ab8f
 
 
10b4a5f
358ab8f
10b4a5f
358ab8f
10b4a5f
358ab8f
 
10b4a5f
358ab8f
 
10b4a5f
 
358ab8f
10b4a5f
 
 
 
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
10b4a5f
 
 
 
 
358ab8f
10b4a5f
 
358ab8f
10b4a5f
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
358ab8f
 
10b4a5f
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
358ab8f
 
 
 
 
10b4a5f
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
358ab8f
10b4a5f
 
 
358ab8f
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
10b4a5f
358ab8f
 
 
 
10b4a5f
358ab8f
 
10b4a5f
358ab8f
 
10b4a5f
358ab8f
 
 
10b4a5f
 
358ab8f
10b4a5f
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
 
 
358ab8f
 
 
 
 
 
10b4a5f
 
358ab8f
 
10b4a5f
 
 
 
 
358ab8f
 
 
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
10b4a5f
358ab8f
10b4a5f
 
 
 
358ab8f
 
10b4a5f
 
 
358ab8f
10b4a5f
358ab8f
 
10b4a5f
358ab8f
10b4a5f
 
358ab8f
10b4a5f
 
 
 
 
358ab8f
 
 
 
10b4a5f
 
358ab8f
 
 
 
10b4a5f
 
 
 
358ab8f
10b4a5f
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
358ab8f
10b4a5f
 
358ab8f
10b4a5f
 
 
 
 
 
 
358ab8f
 
 
 
 
 
10b4a5f
 
358ab8f
 
10b4a5f
 
358ab8f
10b4a5f
358ab8f
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
358ab8f
 
 
 
 
 
 
10b4a5f
358ab8f
 
10b4a5f
 
 
 
 
 
 
358ab8f
 
10b4a5f
358ab8f
 
 
10b4a5f
 
 
358ab8f
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
358ab8f
10b4a5f
358ab8f
 
10b4a5f
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
10b4a5f
 
358ab8f
 
 
 
10b4a5f
358ab8f
 
10b4a5f
 
 
 
 
 
 
358ab8f
10b4a5f
358ab8f
 
10b4a5f
358ab8f
10b4a5f
 
 
 
 
 
358ab8f
10b4a5f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use

import pdb

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F


""" Different samplers, each specifying how to sample pixels for the AP loss.
"""


class FullSampler(nn.Module):
    """all pixels are selected
    - feats: keypoint descriptors
    - confs: reliability values
    """

    def __init__(self):
        nn.Module.__init__(self)
        self.mode = "bilinear"
        self.padding = "zeros"

    @staticmethod
    def _aflow_to_grid(aflow):
        H, W = aflow.shape[2:]
        grid = aflow.permute(0, 2, 3, 1).clone()
        grid[:, :, :, 0] *= 2 / (W - 1)
        grid[:, :, :, 1] *= 2 / (H - 1)
        grid -= 1
        grid[torch.isnan(grid)] = 9e9  # invalids
        return grid

    def _warp(self, feats, confs, aflow):
        if isinstance(aflow, tuple):
            return aflow  # result was precomputed
        feat1, feat2 = feats
        conf1, conf2 = confs if confs else (None, None)

        B, two, H, W = aflow.shape
        D = feat1.shape[1]
        assert feat1.shape == feat2.shape == (B, D, H, W)  # D = 128, B = batch
        assert conf1.shape == conf2.shape == (B, 1, H, W) if confs else True

        # warp img2 to img1
        grid = self._aflow_to_grid(aflow)
        ones2 = feat2.new_ones(feat2[:, 0:1].shape)
        feat2to1 = F.grid_sample(feat2, grid, mode=self.mode, padding_mode=self.padding)
        mask2to1 = F.grid_sample(ones2, grid, mode="nearest", padding_mode="zeros")
        conf2to1 = (
            F.grid_sample(conf2, grid, mode=self.mode, padding_mode=self.padding)
            if confs
            else None
        )
        return feat2to1, mask2to1.byte(), conf2to1

    def _warp_positions(self, aflow):
        B, two, H, W = aflow.shape
        assert two == 2

        Y = torch.arange(H, device=aflow.device)
        X = torch.arange(W, device=aflow.device)
        XY = torch.stack(torch.meshgrid(Y, X)[::-1], dim=0)
        XY = XY[None].expand(B, 2, H, W).float()

        grid = self._aflow_to_grid(aflow)
        XY2 = F.grid_sample(XY, grid, mode="bilinear", padding_mode="zeros")
        return XY, XY2


class SubSampler(FullSampler):
    """pixels are selected in an uniformly spaced grid"""

    def __init__(self, border, subq, subd, perimage=False):
        FullSampler.__init__(self)
        assert subq % subd == 0, "subq must be multiple of subd"
        self.sub_q = subq
        self.sub_d = subd
        self.border = border
        self.perimage = perimage

    def __repr__(self):
        return "SubSampler(border=%d, subq=%d, subd=%d, perimage=%d)" % (
            self.border,
            self.sub_q,
            self.sub_d,
            self.perimage,
        )

    def __call__(self, feats, confs, aflow):
        feat1, conf1 = feats[0], (confs[0] if confs else None)
        # warp with optical flow in img1 coords
        feat2, mask2, conf2 = self._warp(feats, confs, aflow)

        # subsample img1
        slq = slice(self.border, -self.border or None, self.sub_q)
        feat1 = feat1[:, :, slq, slq]
        conf1 = conf1[:, :, slq, slq] if confs else None
        # subsample img2
        sld = slice(self.border, -self.border or None, self.sub_d)
        feat2 = feat2[:, :, sld, sld]
        mask2 = mask2[:, :, sld, sld]
        conf2 = conf2[:, :, sld, sld] if confs else None

        B, D, Hq, Wq = feat1.shape
        B, D, Hd, Wd = feat2.shape

        # compute gt
        if self.perimage or self.sub_q != self.sub_d:
            # compute ground-truth by comparing pixel indices
            f = feats[0][0:1, 0] if self.perimage else feats[0][:, 0]
            idxs = torch.arange(f.numel(), dtype=torch.int64, device=feat1.device).view(
                f.shape
            )
            idxs1 = idxs[:, slq, slq].reshape(-1, Hq * Wq)
            idxs2 = idxs[:, sld, sld].reshape(-1, Hd * Wd)
            if self.perimage:
                gt = idxs1[0].view(-1, 1) == idxs2[0].view(1, -1)
                gt = gt[None, :, :].expand(B, Hq * Wq, Hd * Wd)
            else:
                gt = idxs1.view(-1, 1) == idxs2.view(1, -1)
        else:
            gt = torch.eye(
                feat1[:, 0].numel(), dtype=torch.uint8, device=feat1.device
            )  # always binary for AP loss

        # compute all images together
        queries = feat1.reshape(B, D, -1)  # B x D x (Hq x Wq)
        database = feat2.reshape(B, D, -1)  # B x D x (Hd x Wd)
        if self.perimage:
            queries = queries.transpose(1, 2)  # B x (Hd x Wd) x D
            scores = torch.bmm(queries, database)  # B x (Hq x Wq) x (Hd x Wd)
        else:
            queries = queries.transpose(1, 2).reshape(-1, D)  # (B x Hq x Wq) x D
            database = database.transpose(1, 0).reshape(D, -1)  # D x (B x Hd x Wd)
            scores = torch.matmul(queries, database)  # (B x Hq x Wq) x (B x Hd x Wd)

        # compute reliability
        qconf = (conf1 + conf2) / 2 if confs else None

        assert gt.shape == scores.shape
        return scores, gt, mask2, qconf


class NghSampler(FullSampler):
    """all pixels in a small neighborhood"""

    def __init__(self, ngh, subq=1, subd=1, ignore=1, border=None):
        FullSampler.__init__(self)
        assert 0 <= ignore < ngh
        self.ngh = ngh
        self.ignore = ignore
        assert subd <= ngh
        self.sub_q = subq
        self.sub_d = subd
        if border is None:
            border = ngh
        assert border >= ngh, "border has to be larger than ngh"
        self.border = border

    def __repr__(self):
        return "NghSampler(ngh=%d, subq=%d, subd=%d, ignore=%d, border=%d)" % (
            self.ngh,
            self.sub_q,
            self.sub_d,
            self.ignore,
            self.border,
        )

    def trans(self, arr, i, j):
        s = lambda i: slice(self.border + i, i - self.border or None, self.sub_q)
        return arr[:, :, s(j), s(i)]

    def __call__(self, feats, confs, aflow):
        feat1, conf1 = feats[0], (confs[0] if confs else None)
        # warp with optical flow in img1 coords
        feat2, mask2, conf2 = self._warp(feats, confs, aflow)

        qfeat = self.trans(feat1, 0, 0)
        qconf = (
            (self.trans(conf1, 0, 0) + self.trans(conf2, 0, 0)) / 2 if confs else None
        )
        mask2 = self.trans(mask2, 0, 0)
        scores_at = lambda i, j: (qfeat * self.trans(feat2, i, j)).sum(dim=1)

        # compute scores for all neighbors
        B, D = feat1.shape[:2]
        min_d = self.ignore**2
        max_d = self.ngh**2
        rad = (self.ngh // self.sub_d) * self.ngh  # make an integer multiple
        negs = []
        offsets = []
        for j in range(-rad, rad + 1, self.sub_d):
            for i in range(-rad, rad + 1, self.sub_d):
                if not (min_d < i * i + j * j <= max_d):
                    continue  # out of scope
                offsets.append((i, j))  # Note: this list is just for debug
                negs.append(scores_at(i, j))

        scores = torch.stack([scores_at(0, 0)] + negs, dim=-1)
        gt = scores.new_zeros(scores.shape, dtype=torch.uint8)
        gt[..., 0] = 1  # only the center point is positive

        return scores, gt, mask2, qconf


class FarNearSampler(FullSampler):
    """Sample pixels from *both* a small neighborhood *and* far-away pixels.

    How it works?
        1) Queries are sampled from img1,
            - at least `border` pixels from borders and
            - on a grid with step = `subq`

        2) Close database pixels
            - from the corresponding image (img2),
            - within a `ngh` distance radius
            - on a grid with step = `subd_ngh`
            - ignored if distance to query is >0 and <=`ignore`

        3) Far-away database pixels from ,
            - from all batch images in `img2`
            - at least `border` pixels from borders
            - on a grid with step = `subd_far`
    """

    def __init__(
        self, subq, ngh, subd_ngh, subd_far, border=None, ignore=1, maxpool_ngh=False
    ):
        FullSampler.__init__(self)
        border = border or ngh
        assert ignore < ngh < subd_far, "neighborhood needs to be smaller than far step"
        self.close_sampler = NghSampler(
            ngh=ngh, subq=subq, subd=subd_ngh, ignore=not (maxpool_ngh), border=border
        )
        self.faraway_sampler = SubSampler(border=border, subq=subq, subd=subd_far)
        self.maxpool_ngh = maxpool_ngh

    def __repr__(self):
        c, f = self.close_sampler, self.faraway_sampler
        res = "FarNearSampler(subq=%d, ngh=%d" % (c.sub_q, c.ngh)
        res += ", subd_ngh=%d, subd_far=%d" % (c.sub_d, f.sub_d)
        res += ", border=%d, ign=%d" % (f.border, c.ignore)
        res += ", maxpool_ngh=%d" % self.maxpool_ngh
        return res + ")"

    def __call__(self, feats, confs, aflow):
        # warp with optical flow in img1 coords
        aflow = self._warp(feats, confs, aflow)

        # sample ngh pixels
        scores1, gt1, msk1, conf1 = self.close_sampler(feats, confs, aflow)
        scores1, gt1 = scores1.view(-1, scores1.shape[-1]), gt1.view(-1, gt1.shape[-1])
        if self.maxpool_ngh:
            # we consider all scores from ngh as potential positives
            scores1, self._cached_maxpool_ngh = scores1.max(dim=1, keepdim=True)
            gt1 = gt1[:, 0:1]

        # sample far pixels
        scores2, gt2, msk2, conf2 = self.faraway_sampler(feats, confs, aflow)
        # assert (msk1 == msk2).all()
        # assert (conf1 == conf2).all()

        return (
            torch.cat((scores1, scores2), dim=1),
            torch.cat((gt1, gt2), dim=1),
            msk1,
            conf1 if confs else None,
        )


class NghSampler2(nn.Module):
    """Similar to NghSampler, but doesnt warp the 2nd image.
    Distance to GT =>  0 ... pos_d ... neg_d ... ngh
    Pixel label    =>  + + + + + + 0 0 - - - - - - -

    Subsample on query side: if > 0, regular grid
                                < 0, random points
    In both cases, the number of query points is = W*H/subq**2
    """

    def __init__(
        self,
        ngh,
        subq=1,
        subd=1,
        pos_d=0,
        neg_d=2,
        border=None,
        maxpool_pos=True,
        subd_neg=0,
    ):
        nn.Module.__init__(self)
        assert 0 <= pos_d < neg_d <= (ngh if ngh else 99)
        self.ngh = ngh
        self.pos_d = pos_d
        self.neg_d = neg_d
        assert subd <= ngh or ngh == 0
        assert subq != 0
        self.sub_q = subq
        self.sub_d = subd
        self.sub_d_neg = subd_neg
        if border is None:
            border = ngh
        assert border >= ngh, "border has to be larger than ngh"
        self.border = border
        self.maxpool_pos = maxpool_pos
        self.precompute_offsets()

    def precompute_offsets(self):
        pos_d2 = self.pos_d**2
        neg_d2 = self.neg_d**2
        rad2 = self.ngh**2
        rad = (self.ngh // self.sub_d) * self.ngh  # make an integer multiple
        pos = []
        neg = []
        for j in range(-rad, rad + 1, self.sub_d):
            for i in range(-rad, rad + 1, self.sub_d):
                d2 = i * i + j * j
                if d2 <= pos_d2:
                    pos.append((i, j))
                elif neg_d2 <= d2 <= rad2:
                    neg.append((i, j))

        self.register_buffer("pos_offsets", torch.LongTensor(pos).view(-1, 2).t())
        self.register_buffer("neg_offsets", torch.LongTensor(neg).view(-1, 2).t())

    def gen_grid(self, step, aflow):
        B, two, H, W = aflow.shape
        dev = aflow.device
        b1 = torch.arange(B, device=dev)
        if step > 0:
            # regular grid
            x1 = torch.arange(self.border, W - self.border, step, device=dev)
            y1 = torch.arange(self.border, H - self.border, step, device=dev)
            H1, W1 = len(y1), len(x1)
            x1 = x1[None, None, :].expand(B, H1, W1).reshape(-1)
            y1 = y1[None, :, None].expand(B, H1, W1).reshape(-1)
            b1 = b1[:, None, None].expand(B, H1, W1).reshape(-1)
            shape = (B, H1, W1)
        else:
            # randomly spread
            n = (H - 2 * self.border) * (W - 2 * self.border) // step**2
            x1 = torch.randint(self.border, W - self.border, (n,), device=dev)
            y1 = torch.randint(self.border, H - self.border, (n,), device=dev)
            x1 = x1[None, :].expand(B, n).reshape(-1)
            y1 = y1[None, :].expand(B, n).reshape(-1)
            b1 = b1[:, None].expand(B, n).reshape(-1)
            shape = (B, n)
        return b1, y1, x1, shape

    def forward(self, feats, confs, aflow, **kw):
        B, two, H, W = aflow.shape
        assert two == 2
        feat1, conf1 = feats[0], (confs[0] if confs else None)
        feat2, conf2 = feats[1], (confs[1] if confs else None)

        # positions in the first image
        b1, y1, x1, shape = self.gen_grid(self.sub_q, aflow)

        # sample features from first image
        feat1 = feat1[b1, :, y1, x1]
        qconf = conf1[b1, :, y1, x1].view(shape) if confs else None

        # sample GT from second image
        b2 = b1
        xy2 = (aflow[b1, :, y1, x1] + 0.5).long().t()
        mask = (0 <= xy2[0]) * (0 <= xy2[1]) * (xy2[0] < W) * (xy2[1] < H)
        mask = mask.view(shape)

        def clamp(xy):
            torch.clamp(xy[0], 0, W - 1, out=xy[0])
            torch.clamp(xy[1], 0, H - 1, out=xy[1])
            return xy

        # compute positive scores
        xy2p = clamp(xy2[:, None, :] + self.pos_offsets[:, :, None])
        pscores = (feat1[None, :, :] * feat2[b2, :, xy2p[1], xy2p[0]]).sum(dim=-1).t()
        #        xy1p = clamp(torch.stack((x1,y1))[:,None,:] + self.pos_offsets[:,:,None])
        #        grid = FullSampler._aflow_to_grid(aflow)
        #        feat2p = F.grid_sample(feat2, grid, mode='bilinear', padding_mode='border')
        #        pscores = (feat1[None,:,:] * feat2p[b1,:,xy1p[1], xy1p[0]]).sum(dim=-1).t()
        if self.maxpool_pos:
            pscores, pos = pscores.max(dim=1, keepdim=True)
            if confs:
                sel = clamp(xy2 + self.pos_offsets[:, pos.view(-1)])
                qconf = (qconf + conf2[b2, :, sel[1], sel[0]].view(shape)) / 2

        # compute negative scores
        xy2n = clamp(xy2[:, None, :] + self.neg_offsets[:, :, None])
        nscores = (feat1[None, :, :] * feat2[b2, :, xy2n[1], xy2n[0]]).sum(dim=-1).t()

        if self.sub_d_neg:
            # add distractors from a grid
            b3, y3, x3, _ = self.gen_grid(self.sub_d_neg, aflow)
            distractors = feat2[b3, :, y3, x3]
            dscores = torch.matmul(feat1, distractors.t())
            del distractors

            # remove scores that corresponds to positives or nulls
            dis2 = (x3 - xy2[0][:, None]) ** 2 + (y3 - xy2[1][:, None]) ** 2
            dis2 += (b3 != b2[:, None]).long() * self.neg_d**2
            dscores[dis2 < self.neg_d**2] = 0

            scores = torch.cat((pscores, nscores, dscores), dim=1)
        else:
            # concat everything
            scores = torch.cat((pscores, nscores), dim=1)

        gt = scores.new_zeros(scores.shape, dtype=torch.uint8)
        gt[:, : pscores.shape[1]] = 1

        return scores, gt, mask, qconf