File size: 17,827 Bytes
a80d6bb
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
c74a070
a80d6bb
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
c74a070
a80d6bb
c74a070
a80d6bb
 
 
 
 
 
c74a070
 
a80d6bb
c74a070
a80d6bb
 
 
 
c74a070
 
 
a80d6bb
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
c74a070
 
 
a80d6bb
c74a070
a80d6bb
 
 
 
 
c74a070
 
 
 
a80d6bb
 
 
 
 
 
 
 
c74a070
a80d6bb
c74a070
a80d6bb
 
 
 
 
c74a070
 
 
a80d6bb
c74a070
a80d6bb
 
c74a070
a80d6bb
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
 
 
c74a070
a80d6bb
 
 
c74a070
 
 
 
a80d6bb
 
 
 
c74a070
 
 
 
 
 
a80d6bb
c74a070
 
 
 
 
 
a80d6bb
 
c74a070
a80d6bb
c74a070
a80d6bb
 
c74a070
 
 
a80d6bb
c74a070
 
 
 
a80d6bb
 
 
 
c74a070
 
a80d6bb
c74a070
 
 
 
a80d6bb
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
c74a070
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
c74a070
 
 
a80d6bb
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
a80d6bb
c74a070
 
 
 
 
a80d6bb
 
 
 
 
 
 
c74a070
a80d6bb
 
c74a070
 
a80d6bb
c74a070
 
 
a80d6bb
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
c74a070
 
 
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
 
c74a070
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
a80d6bb
c74a070
a80d6bb
 
c74a070
 
a80d6bb
 
 
 
c74a070
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
c74a070
a80d6bb
c74a070
 
 
 
 
a80d6bb
 
 
c74a070
a80d6bb
 
 
 
c74a070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80d6bb
 
c74a070
a80d6bb
c74a070
a80d6bb
 
 
 
 
 
 
 
 
c74a070
a80d6bb
c74a070
a80d6bb
 
 
 
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
c74a070
 
 
 
 
a80d6bb
 
 
c74a070
 
 
 
a80d6bb
c74a070
 
 
a80d6bb
c74a070
a80d6bb
 
 
c74a070
a80d6bb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
"""
Loss function implementations.
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from kornia.geometry import warp_perspective

from ..misc.geometry_utils import keypoints_to_grid, get_dist_mask, get_common_line_mask


def get_loss_and_weights(model_cfg, device=torch.device("cuda")):
    """Get loss functions and either static or dynamic weighting."""
    # Get the global weighting policy
    w_policy = model_cfg.get("weighting_policy", "static")
    if not w_policy in ["static", "dynamic"]:
        raise ValueError("[Error] Not supported weighting policy.")

    loss_func = {}
    loss_weight = {}
    # Get junction loss function and weight
    w_junc, junc_loss_func = get_junction_loss_and_weight(model_cfg, w_policy)
    loss_func["junc_loss"] = junc_loss_func.to(device)
    loss_weight["w_junc"] = w_junc

    # Get heatmap loss function and weight
    w_heatmap, heatmap_loss_func = get_heatmap_loss_and_weight(
        model_cfg, w_policy, device
    )
    loss_func["heatmap_loss"] = heatmap_loss_func.to(device)
    loss_weight["w_heatmap"] = w_heatmap

    # [Optionally] get descriptor loss function and weight
    if model_cfg.get("descriptor_loss_func", None) is not None:
        w_descriptor, descriptor_loss_func = get_descriptor_loss_and_weight(
            model_cfg, w_policy
        )
        loss_func["descriptor_loss"] = descriptor_loss_func.to(device)
        loss_weight["w_desc"] = w_descriptor

    return loss_func, loss_weight


def get_junction_loss_and_weight(model_cfg, global_w_policy):
    """Get the junction loss function and weight."""
    junction_loss_cfg = model_cfg.get("junction_loss_cfg", {})

    # Get the junction loss weight
    w_policy = junction_loss_cfg.get("policy", global_w_policy)
    if w_policy == "static":
        w_junc = torch.tensor(model_cfg["w_junc"], dtype=torch.float32)
    elif w_policy == "dynamic":
        w_junc = nn.Parameter(
            torch.tensor(model_cfg["w_junc"], dtype=torch.float32), requires_grad=True
        )
    else:
        raise ValueError("[Error] Unknown weighting policy for junction loss weight.")

    # Get the junction loss function
    junc_loss_name = model_cfg.get("junction_loss_func", "superpoint")
    if junc_loss_name == "superpoint":
        junc_loss_func = JunctionDetectionLoss(
            model_cfg["grid_size"], model_cfg["keep_border_valid"]
        )
    else:
        raise ValueError("[Error] Not supported junction loss function.")

    return w_junc, junc_loss_func


def get_heatmap_loss_and_weight(model_cfg, global_w_policy, device):
    """Get the heatmap loss function and weight."""
    heatmap_loss_cfg = model_cfg.get("heatmap_loss_cfg", {})

    # Get the heatmap loss weight
    w_policy = heatmap_loss_cfg.get("policy", global_w_policy)
    if w_policy == "static":
        w_heatmap = torch.tensor(model_cfg["w_heatmap"], dtype=torch.float32)
    elif w_policy == "dynamic":
        w_heatmap = nn.Parameter(
            torch.tensor(model_cfg["w_heatmap"], dtype=torch.float32),
            requires_grad=True,
        )
    else:
        raise ValueError("[Error] Unknown weighting policy for junction loss weight.")

    # Get the corresponding heatmap loss based on the config
    heatmap_loss_name = model_cfg.get("heatmap_loss_func", "cross_entropy")
    if heatmap_loss_name == "cross_entropy":
        # Get the heatmap class weight (always static)
        heatmap_class_w = model_cfg.get("w_heatmap_class", 1.0)
        class_weight = (
            torch.tensor(np.array([1.0, heatmap_class_w])).to(torch.float).to(device)
        )
        heatmap_loss_func = HeatmapLoss(class_weight=class_weight)
    else:
        raise ValueError("[Error] Not supported heatmap loss function.")

    return w_heatmap, heatmap_loss_func


def get_descriptor_loss_and_weight(model_cfg, global_w_policy):
    """Get the descriptor loss function and weight."""
    descriptor_loss_cfg = model_cfg.get("descriptor_loss_cfg", {})

    # Get the descriptor loss weight
    w_policy = descriptor_loss_cfg.get("policy", global_w_policy)
    if w_policy == "static":
        w_descriptor = torch.tensor(model_cfg["w_desc"], dtype=torch.float32)
    elif w_policy == "dynamic":
        w_descriptor = nn.Parameter(
            torch.tensor(model_cfg["w_desc"], dtype=torch.float32), requires_grad=True
        )
    else:
        raise ValueError("[Error] Unknown weighting policy for descriptor loss weight.")

    # Get the descriptor loss function
    descriptor_loss_name = model_cfg.get("descriptor_loss_func", "regular_sampling")
    if descriptor_loss_name == "regular_sampling":
        descriptor_loss_func = TripletDescriptorLoss(
            descriptor_loss_cfg["grid_size"],
            descriptor_loss_cfg["dist_threshold"],
            descriptor_loss_cfg["margin"],
        )
    else:
        raise ValueError("[Error] Not supported descriptor loss function.")

    return w_descriptor, descriptor_loss_func


def space_to_depth(input_tensor, grid_size):
    """PixelUnshuffle for pytorch."""
    N, C, H, W = input_tensor.size()
    # (N, C, H//bs, bs, W//bs, bs)
    x = input_tensor.view(N, C, H // grid_size, grid_size, W // grid_size, grid_size)
    # (N, bs, bs, C, H//bs, W//bs)
    x = x.permute(0, 3, 5, 1, 2, 4).contiguous()
    # (N, C*bs^2, H//bs, W//bs)
    x = x.view(N, C * (grid_size**2), H // grid_size, W // grid_size)
    return x


def junction_detection_loss(
    junction_map, junc_predictions, valid_mask=None, grid_size=8, keep_border=True
):
    """Junction detection loss."""
    # Convert junc_map to channel tensor
    junc_map = space_to_depth(junction_map, grid_size)
    map_shape = junc_map.shape[-2:]
    batch_size = junc_map.shape[0]
    dust_bin_label = (
        torch.ones([batch_size, 1, map_shape[0], map_shape[1]])
        .to(junc_map.device)
        .to(torch.int)
    )
    junc_map = torch.cat([junc_map * 2, dust_bin_label], dim=1)
    labels = torch.argmax(
        junc_map.to(torch.float)
        + torch.distributions.Uniform(0, 0.1)
        .sample(junc_map.shape)
        .to(junc_map.device),
        dim=1,
    )

    # Also convert the valid mask to channel tensor
    valid_mask = torch.ones(junction_map.shape) if valid_mask is None else valid_mask
    valid_mask = space_to_depth(valid_mask, grid_size)

    # Compute junction loss on the border patch or not
    if keep_border:
        valid_mask = (
            torch.sum(valid_mask.to(torch.bool).to(torch.int), dim=1, keepdim=True) > 0
        )
    else:
        valid_mask = (
            torch.sum(valid_mask.to(torch.bool).to(torch.int), dim=1, keepdim=True)
            >= grid_size * grid_size
        )

    # Compute the classification loss
    loss_func = nn.CrossEntropyLoss(reduction="none")
    # The loss still need NCHW format
    loss = loss_func(input=junc_predictions, target=labels.to(torch.long))

    # Weighted sum by the valid mask
    loss_ = torch.sum(
        loss * torch.squeeze(valid_mask.to(torch.float), dim=1), dim=[0, 1, 2]
    )
    loss_final = loss_ / torch.sum(torch.squeeze(valid_mask.to(torch.float), dim=1))

    return loss_final


def heatmap_loss(heatmap_gt, heatmap_pred, valid_mask=None, class_weight=None):
    """Heatmap prediction loss."""
    # Compute the classification loss on each pixel
    if class_weight is None:
        loss_func = nn.CrossEntropyLoss(reduction="none")
    else:
        loss_func = nn.CrossEntropyLoss(class_weight, reduction="none")

    loss = loss_func(
        input=heatmap_pred, target=torch.squeeze(heatmap_gt.to(torch.long), dim=1)
    )

    # Weighted sum by the valid mask
    # Sum over H and W
    loss_spatial_sum = torch.sum(
        loss * torch.squeeze(valid_mask.to(torch.float), dim=1), dim=[1, 2]
    )
    valid_spatial_sum = torch.sum(
        torch.squeeze(valid_mask.to(torch.float32), dim=1), dim=[1, 2]
    )
    # Mean to single scalar over batch dimension
    loss = torch.sum(loss_spatial_sum) / torch.sum(valid_spatial_sum)

    return loss


class JunctionDetectionLoss(nn.Module):
    """Junction detection loss."""

    def __init__(self, grid_size, keep_border):
        super(JunctionDetectionLoss, self).__init__()
        self.grid_size = grid_size
        self.keep_border = keep_border

    def forward(self, prediction, target, valid_mask=None):
        return junction_detection_loss(
            target, prediction, valid_mask, self.grid_size, self.keep_border
        )


class HeatmapLoss(nn.Module):
    """Heatmap prediction loss."""

    def __init__(self, class_weight):
        super(HeatmapLoss, self).__init__()
        self.class_weight = class_weight

    def forward(self, prediction, target, valid_mask=None):
        return heatmap_loss(target, prediction, valid_mask, self.class_weight)


class RegularizationLoss(nn.Module):
    """Module for regularization loss."""

    def __init__(self):
        super(RegularizationLoss, self).__init__()
        self.name = "regularization_loss"
        self.loss_init = torch.zeros([])

    def forward(self, loss_weights):
        # Place it to the same device
        loss = self.loss_init.to(loss_weights["w_junc"].device)
        for _, val in loss_weights.items():
            if isinstance(val, nn.Parameter):
                loss += val

        return loss


def triplet_loss(
    desc_pred1,
    desc_pred2,
    points1,
    points2,
    line_indices,
    epoch,
    grid_size=8,
    dist_threshold=8,
    init_dist_threshold=64,
    margin=1,
):
    """Regular triplet loss for descriptor learning."""
    b_size, _, Hc, Wc = desc_pred1.size()
    img_size = (Hc * grid_size, Wc * grid_size)
    device = desc_pred1.device

    # Extract valid keypoints
    n_points = line_indices.size()[1]
    valid_points = line_indices.bool().flatten()
    n_correct_points = torch.sum(valid_points).item()
    if n_correct_points == 0:
        return torch.tensor(0.0, dtype=torch.float, device=device)

    # Check which keypoints are too close to be matched
    # dist_threshold is decreased at each epoch for easier training
    dist_threshold = max(dist_threshold, 2 * init_dist_threshold // (epoch + 1))
    dist_mask = get_dist_mask(points1, points2, valid_points, dist_threshold)

    # Additionally ban negative mining along the same line
    common_line_mask = get_common_line_mask(line_indices, valid_points)
    dist_mask = dist_mask | common_line_mask

    # Convert the keypoints to a grid suitable for interpolation
    grid1 = keypoints_to_grid(points1, img_size)
    grid2 = keypoints_to_grid(points2, img_size)

    # Extract the descriptors
    desc1 = (
        F.grid_sample(desc_pred1, grid1)
        .permute(0, 2, 3, 1)
        .reshape(b_size * n_points, -1)[valid_points]
    )
    desc1 = F.normalize(desc1, dim=1)
    desc2 = (
        F.grid_sample(desc_pred2, grid2)
        .permute(0, 2, 3, 1)
        .reshape(b_size * n_points, -1)[valid_points]
    )
    desc2 = F.normalize(desc2, dim=1)
    desc_dists = 2 - 2 * (desc1 @ desc2.t())

    # Positive distance loss
    pos_dist = torch.diag(desc_dists)

    # Negative distance loss
    max_dist = torch.tensor(4.0, dtype=torch.float, device=device)
    desc_dists[
        torch.arange(n_correct_points, dtype=torch.long),
        torch.arange(n_correct_points, dtype=torch.long),
    ] = max_dist
    desc_dists[dist_mask] = max_dist
    neg_dist = torch.min(
        torch.min(desc_dists, dim=1)[0], torch.min(desc_dists, dim=0)[0]
    )

    triplet_loss = F.relu(margin + pos_dist - neg_dist)
    return triplet_loss, grid1, grid2, valid_points


class TripletDescriptorLoss(nn.Module):
    """Triplet descriptor loss."""

    def __init__(self, grid_size, dist_threshold, margin):
        super(TripletDescriptorLoss, self).__init__()
        self.grid_size = grid_size
        self.init_dist_threshold = 64
        self.dist_threshold = dist_threshold
        self.margin = margin

    def forward(self, desc_pred1, desc_pred2, points1, points2, line_indices, epoch):
        return self.descriptor_loss(
            desc_pred1, desc_pred2, points1, points2, line_indices, epoch
        )

    # The descriptor loss based on regularly sampled points along the lines
    def descriptor_loss(
        self, desc_pred1, desc_pred2, points1, points2, line_indices, epoch
    ):
        return torch.mean(
            triplet_loss(
                desc_pred1,
                desc_pred2,
                points1,
                points2,
                line_indices,
                epoch,
                self.grid_size,
                self.dist_threshold,
                self.init_dist_threshold,
                self.margin,
            )[0]
        )


class TotalLoss(nn.Module):
    """Total loss summing junction, heatma, descriptor
    and regularization losses."""

    def __init__(self, loss_funcs, loss_weights, weighting_policy):
        super(TotalLoss, self).__init__()
        # Whether we need to compute the descriptor loss
        self.compute_descriptors = "descriptor_loss" in loss_funcs.keys()

        self.loss_funcs = loss_funcs
        self.loss_weights = loss_weights
        self.weighting_policy = weighting_policy

        # Always add regularization loss (it will return zero if not used)
        self.loss_funcs["reg_loss"] = RegularizationLoss().cuda()

    def forward(
        self, junc_pred, junc_target, heatmap_pred, heatmap_target, valid_mask=None
    ):
        """Detection only loss."""
        # Compute the junction loss
        junc_loss = self.loss_funcs["junc_loss"](junc_pred, junc_target, valid_mask)
        # Compute the heatmap loss
        heatmap_loss = self.loss_funcs["heatmap_loss"](
            heatmap_pred, heatmap_target, valid_mask
        )

        # Compute the total loss.
        if self.weighting_policy == "dynamic":
            reg_loss = self.loss_funcs["reg_loss"](self.loss_weights)
            total_loss = (
                junc_loss * torch.exp(-self.loss_weights["w_junc"])
                + heatmap_loss * torch.exp(-self.loss_weights["w_heatmap"])
                + reg_loss
            )

            return {
                "total_loss": total_loss,
                "junc_loss": junc_loss,
                "heatmap_loss": heatmap_loss,
                "reg_loss": reg_loss,
                "w_junc": torch.exp(-self.loss_weights["w_junc"]).item(),
                "w_heatmap": torch.exp(-self.loss_weights["w_heatmap"]).item(),
            }

        elif self.weighting_policy == "static":
            total_loss = (
                junc_loss * self.loss_weights["w_junc"]
                + heatmap_loss * self.loss_weights["w_heatmap"]
            )

            return {
                "total_loss": total_loss,
                "junc_loss": junc_loss,
                "heatmap_loss": heatmap_loss,
            }

        else:
            raise ValueError("[Error] Unknown weighting policy.")

    def forward_descriptors(
        self,
        junc_map_pred1,
        junc_map_pred2,
        junc_map_target1,
        junc_map_target2,
        heatmap_pred1,
        heatmap_pred2,
        heatmap_target1,
        heatmap_target2,
        line_points1,
        line_points2,
        line_indices,
        desc_pred1,
        desc_pred2,
        epoch,
        valid_mask1=None,
        valid_mask2=None,
    ):
        """Loss for detection + description."""
        # Compute junction loss
        junc_loss = self.loss_funcs["junc_loss"](
            torch.cat([junc_map_pred1, junc_map_pred2], dim=0),
            torch.cat([junc_map_target1, junc_map_target2], dim=0),
            torch.cat([valid_mask1, valid_mask2], dim=0),
        )
        # Get junction loss weight (dynamic or not)
        if isinstance(self.loss_weights["w_junc"], nn.Parameter):
            w_junc = torch.exp(-self.loss_weights["w_junc"])
        else:
            w_junc = self.loss_weights["w_junc"]

        # Compute heatmap loss
        heatmap_loss = self.loss_funcs["heatmap_loss"](
            torch.cat([heatmap_pred1, heatmap_pred2], dim=0),
            torch.cat([heatmap_target1, heatmap_target2], dim=0),
            torch.cat([valid_mask1, valid_mask2], dim=0),
        )
        # Get heatmap loss weight (dynamic or not)
        if isinstance(self.loss_weights["w_heatmap"], nn.Parameter):
            w_heatmap = torch.exp(-self.loss_weights["w_heatmap"])
        else:
            w_heatmap = self.loss_weights["w_heatmap"]

        # Compute the descriptor loss
        descriptor_loss = self.loss_funcs["descriptor_loss"](
            desc_pred1, desc_pred2, line_points1, line_points2, line_indices, epoch
        )
        # Get descriptor loss weight (dynamic or not)
        if isinstance(self.loss_weights["w_desc"], nn.Parameter):
            w_descriptor = torch.exp(-self.loss_weights["w_desc"])
        else:
            w_descriptor = self.loss_weights["w_desc"]

        # Update the total loss
        total_loss = (
            junc_loss * w_junc
            + heatmap_loss * w_heatmap
            + descriptor_loss * w_descriptor
        )
        outputs = {
            "junc_loss": junc_loss,
            "heatmap_loss": heatmap_loss,
            "w_junc": w_junc.item() if isinstance(w_junc, nn.Parameter) else w_junc,
            "w_heatmap": w_heatmap.item()
            if isinstance(w_heatmap, nn.Parameter)
            else w_heatmap,
            "descriptor_loss": descriptor_loss,
            "w_desc": w_descriptor.item()
            if isinstance(w_descriptor, nn.Parameter)
            else w_descriptor,
        }

        # Compute the regularization loss
        reg_loss = self.loss_funcs["reg_loss"](self.loss_weights)
        total_loss += reg_loss
        outputs.update({"reg_loss": reg_loss, "total_loss": total_loss})

        return outputs