File size: 1,428 Bytes
8320ccc
 
 
 
 
8811cfe
8320ccc
 
63f3cf2
 
 
8320ccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8811cfe
 
 
 
 
 
 
63f3cf2
84efff1
8320ccc
8811cfe
8320ccc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import sys
from pathlib import Path

import torch

from .. import DEVICE, MODEL_REPO_ID, logger
from ..utils.base_model import BaseModel

tp_path = Path(__file__).parent / "../../third_party"
sys.path.append(str(tp_path))
from pram.nets.gml import GML


class IMP(BaseModel):
    default_conf = {
        "match_threshold": 0.2,
        "features": "sfd2",
        "model_name": "imp_gml.920.pth",
        "sinkhorn_iterations": 20,
    }
    required_inputs = [
        "image0",
        "keypoints0",
        "scores0",
        "descriptors0",
        "image1",
        "keypoints1",
        "scores1",
        "descriptors1",
    ]

    def _init(self, conf):
        self.conf = {**self.default_conf, **conf}
        model_path = self._download_model(
            repo_id=MODEL_REPO_ID,
            filename="{}/{}".format(
                Path(__file__).stem, self.conf["model_name"]
            ),
        )

        # self.net = nets.gml(self.conf).eval().to(DEVICE)
        self.net = GML(self.conf).eval().to(DEVICE)
        self.net.load_state_dict(
            torch.load(model_path, map_location="cpu")["model"], strict=True
        )
        logger.info("Load IMP model done.")

    def _forward(self, data):
        data["descriptors0"] = data["descriptors0"].transpose(2, 1).float()
        data["descriptors1"] = data["descriptors1"].transpose(2, 1).float()

        return self.net.produce_matches(data, p=0.2)