File size: 2,197 Bytes
9223079
 
8320ccc
8811cfe
8320ccc
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2eaeef9
9223079
 
 
 
 
 
 
 
 
 
 
 
 
8811cfe
 
 
 
 
 
 
9223079
 
8320ccc
9223079
 
 
 
 
8004049
9223079
 
2eaeef9
 
 
 
 
9223079
 
8004049
9223079
 
2eaeef9
 
 
 
9223079
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import sys
from pathlib import Path

from .. import MODEL_REPO_ID, logger
from ..utils.base_model import BaseModel

lightglue_path = Path(__file__).parent / "../../third_party/LightGlue"
sys.path.append(str(lightglue_path))
from lightglue import LightGlue as LG


class LightGlue(BaseModel):
    default_conf = {
        "match_threshold": 0.2,
        "filter_threshold": 0.2,
        "width_confidence": 0.99,  # for point pruning
        "depth_confidence": 0.95,  # for early stopping,
        "features": "superpoint",
        "model_name": "superpoint_lightglue.pth",
        "flash": True,  # enable FlashAttention if available.
        "mp": False,  # enable mixed precision
        "add_scale_ori": False,
    }
    required_inputs = [
        "image0",
        "keypoints0",
        "scores0",
        "descriptors0",
        "image1",
        "keypoints1",
        "scores1",
        "descriptors1",
    ]

    def _init(self, conf):
        model_path = self._download_model(
            repo_id=MODEL_REPO_ID,
            filename="{}/{}".format(
                Path(__file__).stem, self.conf["model_name"]
            ),
        )
        conf["weights"] = str(model_path)
        conf["filter_threshold"] = conf["match_threshold"]
        self.net = LG(**conf)
        logger.info("Load lightglue model done.")

    def _forward(self, data):
        input = {}
        input["image0"] = {
            "image": data["image0"],
            "keypoints": data["keypoints0"],
            "descriptors": data["descriptors0"].permute(0, 2, 1),
        }
        if "scales0" in data:
            input["image0"] = {**input["image0"], "scales": data["scales0"]}
        if "oris0" in data:
            input["image0"] = {**input["image0"], "oris": data["oris0"]}

        input["image1"] = {
            "image": data["image1"],
            "keypoints": data["keypoints1"],
            "descriptors": data["descriptors1"].permute(0, 2, 1),
        }
        if "scales1" in data:
            input["image1"] = {**input["image1"], "scales": data["scales1"]}
        if "oris1" in data:
            input["image1"] = {**input["image1"], "oris": data["oris1"]}
        return self.net(input)