File size: 5,693 Bytes
e02ffe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import bisect
import numpy as np
import matplotlib.pyplot as plt
import matplotlib

import torch

def _compute_conf_thresh(data):
    dataset_name = data['dataset_name'][0].lower()
    if dataset_name == 'scannet':
        thr = 5e-4
    elif dataset_name == 'megadepth':
        thr = 1e-4
    else:
        raise ValueError(f'Unknown dataset: {dataset_name}')
    return thr


# --- VISUALIZATION --- #

def make_matching_figure(
        img0, img1, mkpts0, mkpts1, color,
        kpts0=None, kpts1=None, text=[], dpi=75, path=None):
    # draw image pair
    assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
    fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
    axes[0].imshow(img0, cmap='gray')
    axes[1].imshow(img1, cmap='gray')
    for i in range(2):   # clear all frames
        axes[i].get_yaxis().set_ticks([])
        axes[i].get_xaxis().set_ticks([])
        for spine in axes[i].spines.values():
            spine.set_visible(False)
    plt.tight_layout(pad=1)
    
    if kpts0 is not None:
        assert kpts1 is not None
        axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c='w', s=2)
        axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c='w', s=2)

    # draw matches
    if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
        fig.canvas.draw()
        transFigure = fig.transFigure.inverted()
        fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
        fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
        fig.lines = [matplotlib.lines.Line2D((fkpts0[i, 0], fkpts1[i, 0]),
                                            (fkpts0[i, 1], fkpts1[i, 1]),
                                            transform=fig.transFigure, c=color[i], linewidth=1)
                                        for i in range(len(mkpts0))]
        
        axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color, s=4)
        axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color, s=4)

    # put txts
    txt_color = 'k' if img0[:100, :200].mean() > 200 else 'w'
    fig.text(
        0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
        fontsize=15, va='top', ha='left', color=txt_color)

    # save or return figure
    if path:
        plt.savefig(str(path), bbox_inches='tight', pad_inches=0)
        plt.close()
    else:
        return fig


def _make_evaluation_figure(data, b_id, alpha='dynamic'):
    b_mask = data['m_bids'] == b_id
    conf_thr = _compute_conf_thresh(data)
    
    img0 = (data['image0'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
    img1 = (data['image1'][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
    kpts0 = data['mkpts0_f'][b_mask].cpu().numpy()
    kpts1 = data['mkpts1_f'][b_mask].cpu().numpy()
    
    # for megadepth, we visualize matches on the resized image
    if 'scale0' in data:
        kpts0 = kpts0 / data['scale0'][b_id].cpu().numpy()[[1, 0]]
        kpts1 = kpts1 / data['scale1'][b_id].cpu().numpy()[[1, 0]]

    epi_errs = data['epi_errs'][b_mask].cpu().numpy()
    correct_mask = epi_errs < conf_thr
    precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
    n_correct = np.sum(correct_mask)
    n_gt_matches = int(data['conf_matrix_gt'][b_id].sum().cpu())
    recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
    # recall might be larger than 1, since the calculation of conf_matrix_gt
    # uses groundtruth depths and camera poses, but epipolar distance is used here.

    # matching info
    if alpha == 'dynamic':
        alpha = dynamic_alpha(len(correct_mask))
    color = error_colormap(epi_errs, conf_thr, alpha=alpha)
    
    text = [
        f'#Matches {len(kpts0)}',
        f'Precision({conf_thr:.2e}) ({100 * precision:.1f}%): {n_correct}/{len(kpts0)}',
        f'Recall({conf_thr:.2e}) ({100 * recall:.1f}%): {n_correct}/{n_gt_matches}'
    ]
    
    # make the figure
    figure = make_matching_figure(img0, img1, kpts0, kpts1,
                                  color, text=text)
    return figure

def _make_confidence_figure(data, b_id):
    # TODO: Implement confidence figure
    raise NotImplementedError()

def make_matching_figures(data, config, mode='evaluation'):
    """ Make matching figures for a batch.
    
    Args:
        data (Dict): a batch updated by PL_LoFTR.
        config (Dict): matcher config
    Returns:
        figures (Dict[str, List[plt.figure]]
    """
    assert mode in ['evaluation', 'confidence', 'gt']  # 'confidence'
    figures = {mode: []}
    for b_id in range(data['image0'].size(0)):
        if mode == 'evaluation':
            fig = _make_evaluation_figure(
                data, b_id,
                alpha=config.TRAINER.PLOT_MATCHES_ALPHA)
        elif mode == 'confidence':
            fig = _make_confidence_figure(data, b_id)
        else:
            raise ValueError(f'Unknown plot mode: {mode}')
        figures[mode].append(fig)
    return figures


def dynamic_alpha(n_matches,
                  milestones=[0, 300, 1000, 2000],
                  alphas=[1.0, 0.8, 0.4, 0.2]):
    if n_matches == 0:
        return 1.0
    ranges = list(zip(alphas, alphas[1:] + [None]))
    loc = bisect.bisect_right(milestones, n_matches) - 1
    _range = ranges[loc]
    if _range[1] is None:
        return _range[0]
    return _range[1] + (milestones[loc + 1] - n_matches) / (
        milestones[loc + 1] - milestones[loc]) * (_range[0] - _range[1])


def error_colormap(err, thr, alpha=1.0):
    assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
    x = 1 - np.clip(err / (thr * 2), 0, 1)
    return np.clip(
        np.stack([2-x*2, x*2, np.zeros_like(x), np.ones_like(x)*alpha], -1), 0, 1)