File size: 6,649 Bytes
e8fe67e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import random
from PIL import Image
import cv2
import h5py
import numpy as np
import torch
from torch.utils.data import (
    Dataset,
    DataLoader,
    ConcatDataset)

import torchvision.transforms.functional as tvf
import kornia.augmentation as K
import os.path as osp
import matplotlib.pyplot as plt
import romatch
from romatch.utils import get_depth_tuple_transform_ops, get_tuple_transform_ops
from romatch.utils.transforms import GeometricSequential
from tqdm import tqdm

class ScanNetScene:
    def __init__(self, data_root, scene_info, ht = 384, wt = 512, min_overlap=0., shake_t = 0, rot_prob=0.,use_horizontal_flip_aug = False,
) -> None:
        self.scene_root = osp.join(data_root,"scans","scans_train")
        self.data_names = scene_info['name']
        self.overlaps = scene_info['score']
        # Only sample 10s
        valid = (self.data_names[:,-2:] % 10).sum(axis=-1) == 0
        self.overlaps = self.overlaps[valid]
        self.data_names = self.data_names[valid]
        if len(self.data_names) > 10000:
            pairinds = np.random.choice(np.arange(0,len(self.data_names)),10000,replace=False)
            self.data_names = self.data_names[pairinds]
            self.overlaps = self.overlaps[pairinds]
        self.im_transform_ops = get_tuple_transform_ops(resize=(ht, wt), normalize=True)
        self.depth_transform_ops = get_depth_tuple_transform_ops(resize=(ht, wt), normalize=False)
        self.wt, self.ht = wt, ht
        self.shake_t = shake_t
        self.H_generator = GeometricSequential(K.RandomAffine(degrees=90, p=rot_prob))
        self.use_horizontal_flip_aug = use_horizontal_flip_aug

    def load_im(self, im_B, crop=None):
        im = Image.open(im_B)
        return im
    
    def load_depth(self, depth_ref, crop=None):
        depth = cv2.imread(str(depth_ref), cv2.IMREAD_UNCHANGED)
        depth = depth / 1000
        depth = torch.from_numpy(depth).float()  # (h, w)
        return depth

    def __len__(self):
        return len(self.data_names)
    
    def scale_intrinsic(self, K, wi, hi):
        sx, sy = self.wt / wi, self.ht /  hi
        sK = torch.tensor([[sx, 0, 0],
                        [0, sy, 0],
                        [0, 0, 1]])
        return sK@K

    def horizontal_flip(self, im_A, im_B, depth_A, depth_B,  K_A, K_B):
        im_A = im_A.flip(-1)
        im_B = im_B.flip(-1)
        depth_A, depth_B = depth_A.flip(-1), depth_B.flip(-1) 
        flip_mat = torch.tensor([[-1, 0, self.wt],[0,1,0],[0,0,1.]]).to(K_A.device)
        K_A = flip_mat@K_A  
        K_B = flip_mat@K_B  
        
        return im_A, im_B, depth_A, depth_B, K_A, K_B
    def read_scannet_pose(self,path):
        """ Read ScanNet's Camera2World pose and transform it to World2Camera.
        
        Returns:
            pose_w2c (np.ndarray): (4, 4)
        """
        cam2world = np.loadtxt(path, delimiter=' ')
        world2cam = np.linalg.inv(cam2world)
        return world2cam


    def read_scannet_intrinsic(self,path):
        """ Read ScanNet's intrinsic matrix and return the 3x3 matrix.
        """
        intrinsic = np.loadtxt(path, delimiter=' ')
        return torch.tensor(intrinsic[:-1, :-1], dtype = torch.float)

    def __getitem__(self, pair_idx):
        # read intrinsics of original size
        data_name = self.data_names[pair_idx]
        scene_name, scene_sub_name, stem_name_1, stem_name_2 = data_name
        scene_name = f'scene{scene_name:04d}_{scene_sub_name:02d}'
        
        # read the intrinsic of depthmap
        K1 = K2 =  self.read_scannet_intrinsic(osp.join(self.scene_root,
                       scene_name,
                       'intrinsic', 'intrinsic_color.txt'))#the depth K is not the same, but doesnt really matter
        # read and compute relative poses
        T1 =  self.read_scannet_pose(osp.join(self.scene_root,
                       scene_name,
                       'pose', f'{stem_name_1}.txt'))
        T2 =  self.read_scannet_pose(osp.join(self.scene_root,
                       scene_name,
                       'pose', f'{stem_name_2}.txt'))
        T_1to2 = torch.tensor(np.matmul(T2, np.linalg.inv(T1)), dtype=torch.float)[:4, :4]  # (4, 4)

        # Load positive pair data
        im_A_ref = os.path.join(self.scene_root, scene_name, 'color', f'{stem_name_1}.jpg')
        im_B_ref = os.path.join(self.scene_root, scene_name, 'color', f'{stem_name_2}.jpg')
        depth_A_ref = os.path.join(self.scene_root, scene_name, 'depth', f'{stem_name_1}.png')
        depth_B_ref = os.path.join(self.scene_root, scene_name, 'depth', f'{stem_name_2}.png')

        im_A = self.load_im(im_A_ref)
        im_B = self.load_im(im_B_ref)
        depth_A = self.load_depth(depth_A_ref)
        depth_B = self.load_depth(depth_B_ref)

        # Recompute camera intrinsic matrix due to the resize
        K1 = self.scale_intrinsic(K1, im_A.width, im_A.height)
        K2 = self.scale_intrinsic(K2, im_B.width, im_B.height)
        # Process images
        im_A, im_B = self.im_transform_ops((im_A, im_B))
        depth_A, depth_B = self.depth_transform_ops((depth_A[None,None], depth_B[None,None]))
        if self.use_horizontal_flip_aug:
            if np.random.rand() > 0.5:
                im_A, im_B, depth_A, depth_B, K1, K2 = self.horizontal_flip(im_A, im_B, depth_A, depth_B, K1, K2)

        data_dict = {'im_A': im_A,
                    'im_B': im_B,
                    'im_A_depth': depth_A[0,0],
                    'im_B_depth': depth_B[0,0],
                    'K1': K1,
                    'K2': K2,
                    'T_1to2':T_1to2,
                    }
        return data_dict


class ScanNetBuilder:
    def __init__(self, data_root = 'data/scannet') -> None:
        self.data_root = data_root
        self.scene_info_root = os.path.join(data_root,'scannet_indices')
        self.all_scenes = os.listdir(self.scene_info_root)
        
    def build_scenes(self, split = 'train', min_overlap=0., **kwargs):
        # Note: split doesn't matter here as we always use same scannet_train scenes
        scene_names = self.all_scenes
        scenes = []
        for scene_name in tqdm(scene_names, disable = romatch.RANK > 0):
            scene_info = np.load(os.path.join(self.scene_info_root,scene_name), allow_pickle=True)
            scenes.append(ScanNetScene(self.data_root, scene_info, min_overlap=min_overlap, **kwargs))
        return scenes
    
    def weight_scenes(self, concat_dataset, alpha=.5):
        ns = []
        for d in concat_dataset.datasets:
            ns.append(len(d))
        ws = torch.cat([torch.ones(n)/n**alpha for n in ns])
        return ws