File size: 7,144 Bytes
e8fe67e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from einops.einops import rearrange
import torch
import torch.nn as nn
import torch.nn.functional as F
from romatch.utils.utils import get_gt_warp
import wandb
import romatch
import math

# This is slightly different than regular romatch due to significantly worse corresps
# The confidence loss is quite tricky here //Johan

class RobustLosses(nn.Module):
    def __init__(
        self,
        robust=False,
        center_coords=False,
        scale_normalize=False,
        ce_weight=0.01,
        local_loss=True,
        local_dist=None,
        smooth_mask = False,
        depth_interpolation_mode = "bilinear",
        mask_depth_loss = False,
        relative_depth_error_threshold = 0.05,
        alpha = 1.,
        c = 1e-3,
        epe_mask_prob_th = None,
        cert_only_on_consistent_depth = False,
    ):
        super().__init__()
        if local_dist is None:
            local_dist = {}
        self.robust = robust  # measured in pixels
        self.center_coords = center_coords
        self.scale_normalize = scale_normalize
        self.ce_weight = ce_weight
        self.local_loss = local_loss
        self.local_dist = local_dist
        self.smooth_mask = smooth_mask
        self.depth_interpolation_mode = depth_interpolation_mode
        self.mask_depth_loss = mask_depth_loss
        self.relative_depth_error_threshold = relative_depth_error_threshold
        self.avg_overlap = dict()
        self.alpha = alpha
        self.c = c
        self.epe_mask_prob_th = epe_mask_prob_th
        self.cert_only_on_consistent_depth = cert_only_on_consistent_depth

    def corr_volume_loss(self, mnn:torch.Tensor, corr_volume:torch.Tensor, scale):
        b, h,w, h,w = corr_volume.shape
        inv_temp = 10
        corr_volume = corr_volume.reshape(-1, h*w, h*w)
        nll = -(inv_temp*corr_volume).log_softmax(dim = 1) - (inv_temp*corr_volume).log_softmax(dim = 2)
        corr_volume_loss = nll[mnn[:,0], mnn[:,1], mnn[:,2]].mean()
        
        losses = {
            f"gm_corr_volume_loss_{scale}": corr_volume_loss.mean(),
        }
        wandb.log(losses, step = romatch.GLOBAL_STEP)
        return losses

    

    def regression_loss(self, x2, prob, flow, certainty, scale, eps=1e-8, mode = "delta"):
        epe = (flow.permute(0,2,3,1) - x2).norm(dim=-1)
        if scale in self.local_dist:
            prob = prob * (epe < (2 / 512) * (self.local_dist[scale] * scale)).float()
        if scale == 1:
            pck_05 = (epe[prob > 0.99] < 0.5 * (2/512)).float().mean()
            wandb.log({"train_pck_05": pck_05}, step = romatch.GLOBAL_STEP)
        if self.epe_mask_prob_th is not None:
            # if too far away from gt, certainty should be 0
            gt_cert = prob * (epe < scale * self.epe_mask_prob_th)
        else:
            gt_cert = prob
        if self.cert_only_on_consistent_depth:
            ce_loss = F.binary_cross_entropy_with_logits(certainty[:, 0][prob > 0], gt_cert[prob > 0])
        else:    
            ce_loss = F.binary_cross_entropy_with_logits(certainty[:, 0], gt_cert)
        a = self.alpha[scale] if isinstance(self.alpha, dict) else self.alpha
        cs = self.c * scale
        x = epe[prob > 0.99]
        reg_loss = cs**a * ((x/(cs))**2 + 1**2)**(a/2)
        if not torch.any(reg_loss):
            reg_loss = (ce_loss * 0.0)  # Prevent issues where prob is 0 everywhere
        losses = {
            f"{mode}_certainty_loss_{scale}": ce_loss.mean(),
            f"{mode}_regression_loss_{scale}": reg_loss.mean(),
        }
        wandb.log(losses, step = romatch.GLOBAL_STEP)
        return losses

    def forward(self, corresps, batch):
        scales = list(corresps.keys())
        tot_loss = 0.0
        # scale_weights due to differences in scale for regression gradients and classification gradients
        for scale in scales:
            scale_corresps = corresps[scale]
            scale_certainty, flow_pre_delta, delta_cls, offset_scale, scale_gm_corr_volume, scale_gm_certainty, flow, scale_gm_flow = (
                scale_corresps["certainty"],
                scale_corresps.get("flow_pre_delta"),
                scale_corresps.get("delta_cls"),
                scale_corresps.get("offset_scale"),
                scale_corresps.get("corr_volume"),
                scale_corresps.get("gm_certainty"),
                scale_corresps["flow"],
                scale_corresps.get("gm_flow"),

            )
            if flow_pre_delta is not None:
                flow_pre_delta = rearrange(flow_pre_delta, "b d h w -> b h w d")
                b, h, w, d = flow_pre_delta.shape
            else:
                # _ = 1
                b, _, h, w = scale_certainty.shape
            gt_warp, gt_prob = get_gt_warp(                
            batch["im_A_depth"],
            batch["im_B_depth"],
            batch["T_1to2"],
            batch["K1"],
            batch["K2"],
            H=h,
            W=w,
            )
            x2 = gt_warp.float()
            prob = gt_prob
                        
            if scale_gm_corr_volume is not None:
                gt_warp_back, _ = get_gt_warp(                
                batch["im_B_depth"],
                batch["im_A_depth"],
                batch["T_1to2"].inverse(),
                batch["K2"],
                batch["K1"],
                H=h,
                W=w,
                )
                grid = torch.stack(torch.meshgrid(torch.linspace(-1+1/w, 1-1/w, w), torch.linspace(-1+1/h, 1-1/h, h), indexing='xy'), dim =-1).to(gt_warp.device)
                #fwd_bck = F.grid_sample(gt_warp_back.permute(0,3,1,2), gt_warp, align_corners=False, mode = 'bilinear').permute(0,2,3,1)
                #diff = (fwd_bck - grid).norm(dim = -1)
                with torch.no_grad():
                    D_B = torch.cdist(gt_warp.float().reshape(-1,h*w,2), grid.reshape(-1,h*w,2))
                    D_A = torch.cdist(grid.reshape(-1,h*w,2), gt_warp_back.float().reshape(-1,h*w,2))
                    inds = torch.nonzero((D_B == D_B.min(dim=-1, keepdim = True).values) 
                                        * (D_A == D_A.min(dim=-2, keepdim = True).values)
                                        * (D_B < 0.01)
                                        * (D_A < 0.01))

                gm_cls_losses = self.corr_volume_loss(inds, scale_gm_corr_volume, scale)
                gm_loss = gm_cls_losses[f"gm_corr_volume_loss_{scale}"]
                tot_loss = tot_loss + gm_loss
            elif scale_gm_flow is not None:
                gm_flow_losses = self.regression_loss(x2, prob, scale_gm_flow, scale_gm_certainty, scale, mode = "gm")
                gm_loss = self.ce_weight * gm_flow_losses[f"gm_certainty_loss_{scale}"] + gm_flow_losses[f"gm_regression_loss_{scale}"]
                tot_loss = tot_loss +  gm_loss
            delta_regression_losses = self.regression_loss(x2, prob, flow, scale_certainty, scale)
            reg_loss = self.ce_weight * delta_regression_losses[f"delta_certainty_loss_{scale}"] + delta_regression_losses[f"delta_regression_loss_{scale}"]
            tot_loss = tot_loss + reg_loss
        return tot_loss