File size: 4,417 Bytes
2c8b554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
from sys import exit, argv
import csv
import random

import joblib
import numpy as np
import cv2
from PIL import Image
from tqdm import tqdm

import torch
from torch.utils.data import Dataset

from lib.utils import preprocess_image, grid_positions, upscale_positions

np.random.seed(0)


class PhotoTourismIPR(Dataset):
	def __init__(self, base_path, preprocessing, train=True, cropSize=256):
		self.base_path = base_path
		self.train = train
		self.preprocessing = preprocessing
		self.valid_images = []
		self.cropSize=cropSize

	def getImageFiles(self):
		img_files = []
		img_path = "dense/images"
		if self.train:
			print("Inside training!!")

			with open(os.path.join("configs", "train_scenes_small.txt")) as f:
				scenes = f.read().strip("\n").split("\n")

		print("[INFO]",scenes)
		for scene in scenes:
			image_dir = os.path.join(self.base_path, scene, img_path)
			img_names = os.listdir(image_dir)
			img_files += [os.path.join(image_dir, img) for img in img_names]
		return img_files

	def imgCrop(self, img1):
		w, h = img1.size
		left = np.random.randint(low = 0, high = w - (self.cropSize))
		upper = np.random.randint(low = 0, high = h - (self.cropSize))

		cropImg = img1.crop((left, upper, left+self.cropSize, upper+self.cropSize))
		
		return cropImg

	def getGrid(self, im1, im2, H, scaling_steps=3):
		h1, w1 = int(im1.shape[0]/(2**scaling_steps)), int(im1.shape[1]/(2**scaling_steps))
		device = torch.device("cpu")

		fmap_pos1 = grid_positions(h1, w1, device)
		pos1 = upscale_positions(fmap_pos1, scaling_steps=scaling_steps).data.cpu().numpy()

		pos1[[0, 1]] = pos1[[1, 0]]
		
		ones = np.ones((1, pos1.shape[1]))
		pos1Homo = np.vstack((pos1, ones))
		pos2Homo = np.dot(H, pos1Homo)
		pos2Homo = pos2Homo/pos2Homo[2, :]
		pos2 = pos2Homo[0:2, :]

		pos1[[0, 1]] = pos1[[1, 0]]
		pos2[[0, 1]] = pos2[[1, 0]]
		pos1 = pos1.astype(np.float32)
		pos2 = pos2.astype(np.float32)

		ids = []
		for i in range(pos2.shape[1]):
			x, y = pos2[:, i]

			if(2 < x < (im1.shape[0]-2) and 2 < y < (im1.shape[1]-2)):
				ids.append(i)
		pos1 = pos1[:, ids]
		pos2 = pos2[:, ids]

		return pos1, pos2
	
	def imgRotH(self, img1, min=0, max=360):
		width, height = img1.size
		theta = np.random.randint(low=min, high=max) * (np.pi / 180)
		Tx = width / 2
		Ty = height / 2
		sx = random.uniform(-1e-2, 1e-2)
		sy = random.uniform(-1e-2, 1e-2)
		p1 = random.uniform(-1e-4, 1e-4)
		p2 = random.uniform(-1e-4, 1e-4)

		alpha = np.cos(theta)
		beta = np.sin(theta)

		He = np.matrix([[alpha, beta, Tx * (1 - alpha) - Ty * beta], [-beta, alpha, beta * Tx + (1 - alpha) * Ty], [0, 0, 1]])
		Ha = np.matrix([[1, sy, 0], [sx, 1, 0], [0, 0, 1]])
		Hp = np.matrix([[1, 0, 0], [0, 1, 0], [p1, p2, 1]])

		H = He @ Ha @ Hp

		return H, theta

	def build_dataset(self):
		print("Building Dataset.")

		imgFiles = self.getImageFiles()

		for idx in tqdm(range(len(imgFiles))):

			img = imgFiles[idx]
			img1 = Image.open(img)

			if(img1.mode != 'RGB'):
				img1 = img1.convert('RGB')
			if(img1.size[0] < self.cropSize or img1.size[1] < self.cropSize):
				continue

			self.valid_images.append(img)

	def __len__(self):
		return len(self.valid_images)

	def __getitem__(self, idx):
		while 1:
			try:
				img = self.valid_images[idx]    
				   
				img1 = Image.open(img)
				img1 = self.imgCrop(img1)
				width, height = img1.size

				H, theta = self.imgRotH(img1, min=0, max=360)

				img1 = np.array(img1)
				img2 = cv2.warpPerspective(img1, H, dsize=(width,height))
				img2 = np.array(img2)

				pos1, pos2 =  self.getGrid(img1, img2, H)

				assert (len(pos1) != 0 and len(pos2) != 0)
				break
			except IndexError:
				print("IndexError")
				exit(1)
			except:
				del self.valid_images[idx]

		img1 = preprocess_image(img1, preprocessing=self.preprocessing)
		img2 = preprocess_image(img2, preprocessing=self.preprocessing)

		return {
			'image1': torch.from_numpy(img1.astype(np.float32)),
			'image2': torch.from_numpy(img2.astype(np.float32)),
			'pos1': torch.from_numpy(pos1.astype(np.float32)),
			'pos2': torch.from_numpy(pos2.astype(np.float32)),
			'H': np.array(H),
			'theta': np.array([theta])
		}


if __name__ == '__main__':
	rootDir = argv[1]

	training_dataset = PhotoTourismIPR(rootDir, 'caffe')
	training_dataset.build_dataset()

	data = training_dataset[0]
	print(data['image1'].shape, data['image2'].shape, data['pos1'].shape, data['pos2'].shape, len(training_dataset))