File size: 9,092 Bytes
437b5f6
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
 
437b5f6
 
 
 
4c12b36
437b5f6
 
 
4c12b36
 
437b5f6
4c12b36
 
 
437b5f6
 
 
 
 
4c12b36
 
 
 
437b5f6
 
4c12b36
 
437b5f6
 
4c12b36
437b5f6
 
 
4c12b36
 
437b5f6
4c12b36
 
 
 
437b5f6
 
4c12b36
 
437b5f6
 
 
 
4c12b36
437b5f6
4c12b36
 
 
 
437b5f6
 
4c12b36
 
437b5f6
 
4c12b36
437b5f6
 
 
4c12b36
 
437b5f6
 
4c12b36
 
437b5f6
 
 
4c12b36
437b5f6
4c12b36
 
437b5f6
4c12b36
 
 
 
437b5f6
 
4c12b36
437b5f6
 
 
 
4c12b36
437b5f6
4c12b36
 
 
 
437b5f6
4c12b36
 
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
 
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
4c12b36
437b5f6
4c12b36
 
 
 
 
 
437b5f6
 
 
4c12b36
 
 
437b5f6
 
4c12b36
 
 
437b5f6
 
 
4c12b36
 
 
437b5f6
 
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
4c12b36
437b5f6
 
4c12b36
437b5f6
 
 
 
 
 
 
 
4c12b36
 
 
 
 
437b5f6
 
 
 
 
4c12b36
437b5f6
 
 
 
 
4c12b36
437b5f6
4c12b36
437b5f6
 
 
4c12b36
 
 
437b5f6
 
 
 
4c12b36
 
 
 
 
437b5f6
4c12b36
 
 
 
 
 
 
437b5f6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import torch
import cv2
import numpy as np
from collections import OrderedDict
from loguru import logger
from kornia.geometry.epipolar import numeric
from kornia.geometry.conversions import convert_points_to_homogeneous


# --- METRICS ---


def relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0):
    # angle error between 2 vectors
    t_gt = T_0to1[:3, 3]
    n = np.linalg.norm(t) * np.linalg.norm(t_gt)
    t_err = np.rad2deg(np.arccos(np.clip(np.dot(t, t_gt) / n, -1.0, 1.0)))
    t_err = np.minimum(t_err, 180 - t_err)  # handle E ambiguity
    if np.linalg.norm(t_gt) < ignore_gt_t_thr:  # pure rotation is challenging
        t_err = 0

    # angle error between 2 rotation matrices
    R_gt = T_0to1[:3, :3]
    cos = (np.trace(np.dot(R.T, R_gt)) - 1) / 2
    cos = np.clip(cos, -1.0, 1.0)  # handle numercial errors
    R_err = np.rad2deg(np.abs(np.arccos(cos)))

    return t_err, R_err


def symmetric_epipolar_distance(pts0, pts1, E, K0, K1):
    """Squared symmetric epipolar distance.
    This can be seen as a biased estimation of the reprojection error.
    Args:
        pts0 (torch.Tensor): [N, 2]
        E (torch.Tensor): [3, 3]
    """
    pts0 = (pts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
    pts1 = (pts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
    pts0 = convert_points_to_homogeneous(pts0)
    pts1 = convert_points_to_homogeneous(pts1)

    Ep0 = pts0 @ E.T  # [N, 3]
    p1Ep0 = torch.sum(pts1 * Ep0, -1)  # [N,]
    Etp1 = pts1 @ E  # [N, 3]

    d = p1Ep0**2 * (
        1.0 / (Ep0[:, 0] ** 2 + Ep0[:, 1] ** 2)
        + 1.0 / (Etp1[:, 0] ** 2 + Etp1[:, 1] ** 2)
    )  # N
    return d


def compute_symmetrical_epipolar_errors(data):
    """
    Update:
        data (dict):{"epi_errs": [M]}
    """
    Tx = numeric.cross_product_matrix(data["T_0to1"][:, :3, 3])
    E_mat = Tx @ data["T_0to1"][:, :3, :3]

    m_bids = data["m_bids"]
    pts0 = data["mkpts0_f"]
    pts1 = data["mkpts1_f"]

    epi_errs = []
    for bs in range(Tx.size(0)):
        mask = m_bids == bs
        epi_errs.append(
            symmetric_epipolar_distance(
                pts0[mask], pts1[mask], E_mat[bs], data["K0"][bs], data["K1"][bs]
            )
        )
    epi_errs = torch.cat(epi_errs, dim=0)

    data.update({"epi_errs": epi_errs})


def compute_symmetrical_epipolar_errors_offset(data):
    """
    Update:
        data (dict):{"epi_errs": [M]}
    """
    Tx = numeric.cross_product_matrix(data["T_0to1"][:, :3, 3])
    E_mat = Tx @ data["T_0to1"][:, :3, :3]

    m_bids = data["offset_bids"]
    l_ids = data["offset_lids"]
    pts0 = data["offset_kpts0_f"]
    pts1 = data["offset_kpts1_f"]

    epi_errs = []
    layer_num = data["predict_flow"][0].shape[0]

    for bs in range(Tx.size(0)):
        for ls in range(layer_num):
            mask_b = m_bids == bs
            mask_l = l_ids == ls
            mask = mask_b & mask_l
            epi_errs.append(
                symmetric_epipolar_distance(
                    pts0[mask], pts1[mask], E_mat[bs], data["K0"][bs], data["K1"][bs]
                )
            )
    epi_errs = torch.cat(epi_errs, dim=0)

    data.update({"epi_errs_offset": epi_errs})  # [b*l*n]


def compute_symmetrical_epipolar_errors_offset_bidirectional(data):
    """
    Update
        data (dict):{"epi_errs": [M]}
    """
    _compute_symmetrical_epipolar_errors_offset(data, "left")
    _compute_symmetrical_epipolar_errors_offset(data, "right")


def _compute_symmetrical_epipolar_errors_offset(data, side):
    """
    Update
        data (dict):{"epi_errs": [M]}
    """
    assert side == "left" or side == "right", "invalid side"

    Tx = numeric.cross_product_matrix(data["T_0to1"][:, :3, 3])
    E_mat = Tx @ data["T_0to1"][:, :3, :3]

    m_bids = data["offset_bids_" + side]
    l_ids = data["offset_lids_" + side]
    pts0 = data["offset_kpts0_f_" + side]
    pts1 = data["offset_kpts1_f_" + side]

    epi_errs = []
    layer_num = data["predict_flow"][0].shape[0]
    for bs in range(Tx.size(0)):
        for ls in range(layer_num):
            mask_b = m_bids == bs
            mask_l = l_ids == ls
            mask = mask_b & mask_l
            epi_errs.append(
                symmetric_epipolar_distance(
                    pts0[mask], pts1[mask], E_mat[bs], data["K0"][bs], data["K1"][bs]
                )
            )
    epi_errs = torch.cat(epi_errs, dim=0)
    data.update({"epi_errs_offset_" + side: epi_errs})  # [b*l*n]


def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999):
    if len(kpts0) < 5:
        return None
    # normalize keypoints
    kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
    kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]

    # normalize ransac threshold
    ransac_thr = thresh / np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]])

    # compute pose with cv2
    E, mask = cv2.findEssentialMat(
        kpts0, kpts1, np.eye(3), threshold=ransac_thr, prob=conf, method=cv2.RANSAC
    )
    if E is None:
        print("\nE is None while trying to recover pose.\n")
        return None

    # recover pose from E
    best_num_inliers = 0
    ret = None
    for _E in np.split(E, len(E) / 3):
        n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
        if n > best_num_inliers:
            ret = (R, t[:, 0], mask.ravel() > 0)
            best_num_inliers = n

    return ret


def compute_pose_errors(data, config):
    """
    Update:
        data (dict):{
            "R_errs" List[float]: [N]
            "t_errs" List[float]: [N]
            "inliers" List[np.ndarray]: [N]
        }
    """
    pixel_thr = config.TRAINER.RANSAC_PIXEL_THR  # 0.5
    conf = config.TRAINER.RANSAC_CONF  # 0.99999
    data.update({"R_errs": [], "t_errs": [], "inliers": []})

    m_bids = data["m_bids"].cpu().numpy()
    pts0 = data["mkpts0_f"].cpu().numpy()
    pts1 = data["mkpts1_f"].cpu().numpy()
    K0 = data["K0"].cpu().numpy()
    K1 = data["K1"].cpu().numpy()
    T_0to1 = data["T_0to1"].cpu().numpy()

    for bs in range(K0.shape[0]):
        mask = m_bids == bs
        ret = estimate_pose(
            pts0[mask], pts1[mask], K0[bs], K1[bs], pixel_thr, conf=conf
        )

        if ret is None:
            data["R_errs"].append(np.inf)
            data["t_errs"].append(np.inf)
            data["inliers"].append(np.array([]).astype(np.bool))
        else:
            R, t, inliers = ret
            t_err, R_err = relative_pose_error(T_0to1[bs], R, t, ignore_gt_t_thr=0.0)
            data["R_errs"].append(R_err)
            data["t_errs"].append(t_err)
            data["inliers"].append(inliers)


# --- METRIC AGGREGATION ---


def error_auc(errors, thresholds):
    """
    Args:
        errors (list): [N,]
        thresholds (list)
    """
    errors = [0] + sorted(list(errors))
    recall = list(np.linspace(0, 1, len(errors)))

    aucs = []
    thresholds = [5, 10, 20]
    for thr in thresholds:
        last_index = np.searchsorted(errors, thr)
        y = recall[:last_index] + [recall[last_index - 1]]
        x = errors[:last_index] + [thr]
        aucs.append(np.trapz(y, x) / thr)

    return {f"auc@{t}": auc for t, auc in zip(thresholds, aucs)}


def epidist_prec(errors, thresholds, ret_dict=False, offset=False):
    precs = []
    for thr in thresholds:
        prec_ = []
        for errs in errors:
            correct_mask = errs < thr
            prec_.append(np.mean(correct_mask) if len(correct_mask) > 0 else 0)
        precs.append(np.mean(prec_) if len(prec_) > 0 else 0)
    if ret_dict:
        return (
            {f"prec@{t:.0e}": prec for t, prec in zip(thresholds, precs)}
            if not offset
            else {f"prec_flow@{t:.0e}": prec for t, prec in zip(thresholds, precs)}
        )
    else:
        return precs


def aggregate_metrics(metrics, epi_err_thr=5e-4):
    """Aggregate metrics for the whole dataset:
    (This method should be called once per dataset)
    1. AUC of the pose error (angular) at the threshold [5, 10, 20]
    2. Mean matching precision at the threshold 5e-4(ScanNet), 1e-4(MegaDepth)
    """
    # filter duplicates
    unq_ids = OrderedDict((iden, id) for id, iden in enumerate(metrics["identifiers"]))
    unq_ids = list(unq_ids.values())
    logger.info(f"Aggregating metrics over {len(unq_ids)} unique items...")

    # pose auc
    angular_thresholds = [5, 10, 20]
    pose_errors = np.max(np.stack([metrics["R_errs"], metrics["t_errs"]]), axis=0)[
        unq_ids
    ]
    aucs = error_auc(pose_errors, angular_thresholds)  # (auc@5, auc@10, auc@20)

    # matching precision
    dist_thresholds = [epi_err_thr]
    precs = epidist_prec(
        np.array(metrics["epi_errs"], dtype=object)[unq_ids], dist_thresholds, True
    )  # (prec@err_thr)

    # offset precision
    try:
        precs_offset = epidist_prec(
            np.array(metrics["epi_errs_offset"], dtype=object)[unq_ids],
            [2e-3],
            True,
            offset=True,
        )
        return {**aucs, **precs, **precs_offset}
    except:
        return {**aucs, **precs}