File size: 3,696 Bytes
65bbe08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
import torch.nn as nn
import torch.nn.functional as F

import torchvision.models as models


class DenseFeatureExtractionModule(nn.Module):
    def __init__(self, finetune_feature_extraction=False, use_cuda=True):
        super(DenseFeatureExtractionModule, self).__init__()

        model = models.vgg16()
        vgg16_layers = [
            'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2',
            'pool1',
            'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2',
            'pool2',
            'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3',
            'pool3',
            'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3',
            'pool4',
            'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3',
            'pool5'
        ]
        conv4_3_idx = vgg16_layers.index('conv4_3')

        self.model = nn.Sequential(
            *list(model.features.children())[: conv4_3_idx + 1]
        )

        self.num_channels = 512

        # Fix forward parameters
        for param in self.model.parameters():
            param.requires_grad = False
        if finetune_feature_extraction:
            # Unlock conv4_3
            for param in list(self.model.parameters())[-2 :]:
                param.requires_grad = True

        if use_cuda:
            self.model = self.model.cuda()

    def forward(self, batch):
        output = self.model(batch)
        return output


class SoftDetectionModule(nn.Module):
    def __init__(self, soft_local_max_size=3):
        super(SoftDetectionModule, self).__init__()

        self.soft_local_max_size = soft_local_max_size

        self.pad = self.soft_local_max_size // 2

    def forward(self, batch):
        b = batch.size(0)

        batch = F.relu(batch)

        max_per_sample = torch.max(batch.view(b, -1), dim=1)[0]
        exp = torch.exp(batch / max_per_sample.view(b, 1, 1, 1))
        sum_exp = (
            self.soft_local_max_size ** 2 *
            F.avg_pool2d(
                F.pad(exp, [self.pad] * 4, mode='constant', value=1.),
                self.soft_local_max_size, stride=1
            )
        )
        local_max_score = exp / sum_exp

        depth_wise_max = torch.max(batch, dim=1)[0]
        depth_wise_max_score = batch / depth_wise_max.unsqueeze(1)

        all_scores = local_max_score * depth_wise_max_score
        score = torch.max(all_scores, dim=1)[0]

        score = score / torch.sum(score.view(b, -1), dim=1).view(b, 1, 1)

        return score


class D2Net(nn.Module):
    def __init__(self, model_file=None, use_cuda=True):
        super(D2Net, self).__init__()

        self.dense_feature_extraction = DenseFeatureExtractionModule(
            finetune_feature_extraction=True,
            use_cuda=use_cuda
        )

        self.detection = SoftDetectionModule()

        if model_file is not None:
            if use_cuda:
                self.load_state_dict(torch.load(model_file)['model'])
            else:
                self.load_state_dict(torch.load(model_file, map_location='cpu')['model'])

    def forward(self, batch):
        b = batch['image1'].size(0)

        dense_features = self.dense_feature_extraction(
            torch.cat([batch['image1'], batch['image2']], dim=0)
        )

        scores = self.detection(dense_features)

        dense_features1 = dense_features[: b, :, :, :]
        dense_features2 = dense_features[b :, :, :, :]

        scores1 = scores[: b, :, :]
        scores2 = scores[b :, :, :]

        return {
            'dense_features1': dense_features1,
            'scores1': scores1,
            'dense_features2': dense_features2,
            'scores2': scores2
        }