Spaces:
Running
Running
File size: 1,057 Bytes
f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import torch
import torch.nn.functional as F
import numpy as np
def fast_kde(x, std=0.1, kernel_size=9, dilation=3, padding=9 // 2, stride=1):
raise NotImplementedError("WIP, use at your own risk.")
# Note: when doing symmetric matching this might not be very exact, since we only check neighbours on the grid
x = x.permute(0, 3, 1, 2)
B, C, H, W = x.shape
K = kernel_size**2
unfolded_x = F.unfold(
x, kernel_size=kernel_size, dilation=dilation, padding=padding, stride=stride
).reshape(B, C, K, H, W)
scores = (-(unfolded_x - x[:, :, None]).sum(dim=1) ** 2 / (2 * std**2)).exp()
density = scores.sum(dim=1)
return density
def kde(x, std=0.1, device=None):
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if isinstance(x, np.ndarray):
x = torch.from_numpy(x)
# use a gaussian kernel to estimate density
x = x.to(device)
scores = (-torch.cdist(x, x) ** 2 / (2 * std**2)).exp()
density = scores.sum(dim=-1)
return density
|