Spaces:
Running
Running
File size: 18,320 Bytes
63f3cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> basicdataset
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 29/01/2024 14:27
=================================================='''
import torchvision.transforms.functional as tvf
import torchvision.transforms as tvt
import os.path as osp
import numpy as np
import cv2
from colmap_utils.read_write_model import qvec2rotmat, read_model
from dataset.utils import normalize_size
class BasicDataset:
def __init__(self,
img_list_fn,
feature_dir,
sfm_path,
seg_fn,
dataset_path,
n_class,
dataset,
nfeatures=1024,
query_p3d_fn=None,
train=True,
with_aug=False,
min_inliers=0,
max_inliers=4096,
random_inliers=False,
jitter_params=None,
scale_params=None,
image_dim=1,
pre_load=False,
query_info_path=None,
sc_mean_scale_fn=None,
):
self.n_class = n_class
self.train = train
self.min_inliers = min_inliers
self.max_inliers = max_inliers if max_inliers < nfeatures else nfeatures
self.random_inliers = random_inliers
self.dataset_path = dataset_path
self.with_aug = with_aug
self.dataset = dataset
self.jitter_params = jitter_params
self.scale_params = scale_params
self.image_dim = image_dim
self.image_prefix = ''
train_transforms = []
if self.with_aug:
train_transforms.append(tvt.ColorJitter(
brightness=jitter_params['brightness'],
contrast=jitter_params['contrast'],
saturation=jitter_params['saturation'],
hue=jitter_params['hue']))
if jitter_params['blur'] > 0:
train_transforms.append(tvt.GaussianBlur(kernel_size=int(jitter_params['blur'])))
self.train_transforms = tvt.Compose(train_transforms)
# only for testing of query images
if not self.train:
data = np.load(query_p3d_fn, allow_pickle=True)[()]
self.img_p3d = data
else:
self.img_p3d = {}
self.img_fns = []
with open(img_list_fn, 'r') as f:
lines = f.readlines()
for l in lines:
l = l.strip()
self.img_fns.append(l)
print('Load {} images from {} for {}...'.format(len(self.img_fns), dataset, 'training' if train else 'eval'))
self.feats = {}
if train:
self.cameras, self.images, point3Ds = read_model(path=sfm_path, ext='.bin')
self.name_to_id = {image.name: i for i, image in self.images.items()}
data = np.load(seg_fn, allow_pickle=True)[()]
p3d_id = data['id']
seg_id = data['label']
self.p3d_seg = {p3d_id[i]: seg_id[i] for i in range(p3d_id.shape[0])}
self.p3d_xyzs = {}
for pid in self.p3d_seg.keys():
p3d = point3Ds[pid]
self.p3d_xyzs[pid] = p3d.xyz
with open(sc_mean_scale_fn, 'r') as f:
lines = f.readlines()
for l in lines:
l = l.strip().split()
self.mean_xyz = np.array([float(v) for v in l[:3]])
self.scale_xyz = np.array([float(v) for v in l[3:]])
if not train:
self.query_info = self.read_query_info(path=query_info_path)
self.nfeatures = nfeatures
self.feature_dir = feature_dir
print('Pre loaded {} feats, mean xyz {}, scale xyz {}'.format(len(self.feats.keys()), self.mean_xyz,
self.scale_xyz))
def normalize_p3ds(self, p3ds):
mean_p3ds = np.ceil(np.mean(p3ds, axis=0))
p3ds_ = p3ds - mean_p3ds
dx = np.max(abs(p3ds_[:, 0]))
dy = np.max(abs(p3ds_[:, 1]))
dz = np.max(abs(p3ds_[:, 2]))
scale_p3ds = np.ceil(np.array([dx, dy, dz], dtype=float).reshape(3, ))
scale_p3ds[scale_p3ds < 1] = 1
scale_p3ds[scale_p3ds == 0] = 1
return mean_p3ds, scale_p3ds
def read_query_info(self, path):
query_info = {}
with open(path, 'r') as f:
lines = f.readlines()
for l in lines:
l = l.strip().split()
image_name = l[0]
cam_model = l[1]
h, w = int(l[2]), int(l[3])
params = np.array([float(v) for v in l[4:]])
query_info[image_name] = {
'width': w,
'height': h,
'model': cam_model,
'params': params,
}
return query_info
def extract_intrinsic_extrinsic_params(self, image_id):
cam = self.cameras[self.images[image_id].camera_id]
params = cam.params
model = cam.model
if model in ("SIMPLE_PINHOLE", "SIMPLE_RADIAL", "RADIAL"):
fx = fy = params[0]
cx = params[1]
cy = params[2]
elif model in ("PINHOLE", "OPENCV", "OPENCV_FISHEYE", "FULL_OPENCV"):
fx = params[0]
fy = params[1]
cx = params[2]
cy = params[3]
else:
raise Exception("Camera model not supported")
K = np.eye(3, dtype=float)
K[0, 0] = fx
K[1, 1] = fy
K[0, 2] = cx
K[1, 2] = cy
qvec = self.images[image_id].qvec
tvec = self.images[image_id].tvec
R = qvec2rotmat(qvec=qvec)
P = np.eye(4, dtype=float)
P[:3, :3] = R
P[:3, 3] = tvec.reshape(3, )
return {'K': K, 'P': P}
def get_item_train(self, idx):
img_name = self.img_fns[idx]
if img_name in self.feats.keys():
feat_data = self.feats[img_name]
else:
feat_data = np.load(osp.join(self.feature_dir, img_name.replace('/', '+') + '.npy'), allow_pickle=True)[()]
# descs = feat_data['descriptors'] # [N, D]
scores = feat_data['scores'] # [N, 1]
kpts = feat_data['keypoints'] # [N, 2]
image_size = feat_data['image_size']
nfeat = kpts.shape[0]
# print(img_name, self.name_to_id[img_name])
p3d_ids = self.images[self.name_to_id[img_name]].point3D_ids
p3d_xyzs = np.zeros(shape=(nfeat, 3), dtype=float)
seg_ids = np.zeros(shape=(nfeat,), dtype=int) # + self.n_class - 1
for i in range(nfeat):
p3d = p3d_ids[i]
if p3d in self.p3d_seg.keys():
seg_ids[i] = self.p3d_seg[p3d] + 1 # 0 for invalid
if seg_ids[i] == -1:
seg_ids[i] = 0
if p3d in self.p3d_xyzs.keys():
p3d_xyzs[i] = self.p3d_xyzs[p3d]
seg_ids = np.array(seg_ids).reshape(-1, )
n_inliers = np.sum(seg_ids > 0)
n_outliers = np.sum(seg_ids == 0)
inlier_ids = np.where(seg_ids > 0)[0]
outlier_ids = np.where(seg_ids == 0)[0]
if n_inliers <= self.min_inliers:
sel_inliers = n_inliers
sel_outliers = self.nfeatures - sel_inliers
out_ids = np.arange(n_outliers)
np.random.shuffle(out_ids)
sel_ids = np.hstack([inlier_ids, outlier_ids[out_ids[:self.nfeatures - n_inliers]]])
else:
sel_inliers = np.random.randint(self.min_inliers, self.max_inliers)
if sel_inliers > n_inliers:
sel_inliers = n_inliers
if sel_inliers + n_outliers < self.nfeatures:
sel_inliers = self.nfeatures - n_outliers
sel_outliers = self.nfeatures - sel_inliers
in_ids = np.arange(n_inliers)
np.random.shuffle(in_ids)
sel_inlier_ids = inlier_ids[in_ids[:sel_inliers]]
out_ids = np.arange(n_outliers)
np.random.shuffle(out_ids)
sel_outlier_ids = outlier_ids[out_ids[:sel_outliers]]
sel_ids = np.hstack([sel_inlier_ids, sel_outlier_ids])
# sel_descs = descs[sel_ids]
sel_scores = scores[sel_ids]
sel_kpts = kpts[sel_ids]
sel_seg_ids = seg_ids[sel_ids]
sel_xyzs = p3d_xyzs[sel_ids]
shuffle_ids = np.arange(sel_ids.shape[0])
np.random.shuffle(shuffle_ids)
# sel_descs = sel_descs[shuffle_ids]
sel_scores = sel_scores[shuffle_ids]
sel_kpts = sel_kpts[shuffle_ids]
sel_seg_ids = sel_seg_ids[shuffle_ids]
sel_xyzs = sel_xyzs[shuffle_ids]
if sel_kpts.shape[0] < self.nfeatures:
# print(sel_descs.shape, sel_kpts.shape, sel_scores.shape, sel_seg_ids.shape, sel_xyzs.shape)
valid_sel_ids = np.array([v for v in range(sel_kpts.shape[0]) if sel_seg_ids[v] > 0], dtype=int)
# ref_sel_id = np.random.choice(valid_sel_ids, size=1)[0]
if valid_sel_ids.shape[0] == 0:
valid_sel_ids = np.array([v for v in range(sel_kpts.shape[0])], dtype=int)
random_n = self.nfeatures - sel_kpts.shape[0]
random_scores = np.random.random((random_n,))
random_kpts, random_seg_ids, random_xyzs = self.random_points_from_reference(
n=random_n,
ref_kpts=sel_kpts[valid_sel_ids],
ref_segs=sel_seg_ids[valid_sel_ids],
ref_xyzs=sel_xyzs[valid_sel_ids],
radius=5,
)
# sel_descs = np.vstack([sel_descs, random_descs])
sel_scores = np.hstack([sel_scores, random_scores])
sel_kpts = np.vstack([sel_kpts, random_kpts])
sel_seg_ids = np.hstack([sel_seg_ids, random_seg_ids])
sel_xyzs = np.vstack([sel_xyzs, random_xyzs])
gt_n_seg = np.zeros(shape=(self.n_class,), dtype=int)
gt_cls = np.zeros(shape=(self.n_class,), dtype=int)
gt_cls_dist = np.zeros(shape=(self.n_class,), dtype=float)
uids = np.unique(sel_seg_ids).tolist()
for uid in uids:
if uid == 0:
continue
gt_cls[uid] = 1
gt_n_seg[uid] = np.sum(sel_seg_ids == uid)
gt_cls_dist[uid] = np.sum(seg_ids == uid) / np.sum(seg_ids > 0) # [valid_id / total_valid_id]
param_out = self.extract_intrinsic_extrinsic_params(image_id=self.name_to_id[img_name])
img = self.read_image(image_name=img_name)
image_size = img.shape[:2]
if self.image_dim == 1:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if self.with_aug:
nh = img.shape[0]
nw = img.shape[1]
if self.scale_params is not None:
do_scale = np.random.random()
if do_scale <= 0.25:
p = np.random.randint(0, 11)
s = self.scale_params[0] + (self.scale_params[1] - self.scale_params[0]) / 10 * p
nh = int(img.shape[0] * s)
nw = int(img.shape[1] * s)
sh = nh / img.shape[0]
sw = nw / img.shape[1]
sel_kpts[:, 0] = sel_kpts[:, 0] * sw
sel_kpts[:, 1] = sel_kpts[:, 1] * sh
img = cv2.resize(img, dsize=(nw, nh))
brightness = np.random.uniform(-self.jitter_params['brightness'], self.jitter_params['brightness']) * 255
contrast = 1 + np.random.uniform(-self.jitter_params['contrast'], self.jitter_params['contrast'])
img = cv2.addWeighted(img, contrast, img, 0, brightness)
img = np.clip(img, a_min=0, a_max=255)
if self.image_dim == 1:
img = img[..., None]
img = img.astype(float) / 255.
image_size = np.array([nh, nw], dtype=int)
else:
if self.image_dim == 1:
img = img[..., None].astype(float) / 255.
output = {
# 'descriptors': sel_descs, # may not be used
'scores': sel_scores,
'keypoints': sel_kpts,
'norm_keypoints': normalize_size(x=sel_kpts, size=image_size),
'image': [img],
'gt_seg': sel_seg_ids,
'gt_cls': gt_cls,
'gt_cls_dist': gt_cls_dist,
'gt_n_seg': gt_n_seg,
'file_name': img_name,
'prefix_name': self.image_prefix,
# 'mean_xyz': self.mean_xyz,
# 'scale_xyz': self.scale_xyz,
# 'gt_sc': sel_xyzs,
# 'gt_norm_sc': (sel_xyzs - self.mean_xyz) / self.scale_xyz,
'K': param_out['K'],
'gt_P': param_out['P']
}
return output
def get_item_test(self, idx):
# evaluation of recognition only
img_name = self.img_fns[idx]
feat_data = np.load(osp.join(self.feature_dir, img_name.replace('/', '+') + '.npy'), allow_pickle=True)[()]
descs = feat_data['descriptors'] # [N, D]
scores = feat_data['scores'] # [N, 1]
kpts = feat_data['keypoints'] # [N, 2]
image_size = feat_data['image_size']
nfeat = descs.shape[0]
if img_name in self.img_p3d.keys():
p3d_ids = self.img_p3d[img_name]
p3d_xyzs = np.zeros(shape=(nfeat, 3), dtype=float)
seg_ids = np.zeros(shape=(nfeat,), dtype=int) # attention! by default invalid!!!
for i in range(nfeat):
p3d = p3d_ids[i]
if p3d in self.p3d_seg.keys():
seg_ids[i] = self.p3d_seg[p3d] + 1
if seg_ids[i] == -1:
seg_ids[i] = 0 # 0 for in valid
if p3d in self.p3d_xyzs.keys():
p3d_xyzs[i] = self.p3d_xyzs[p3d]
seg_ids = np.array(seg_ids).reshape(-1, )
if self.nfeatures > 0:
sorted_ids = np.argsort(scores)[::-1][:self.nfeatures] # large to small
descs = descs[sorted_ids]
scores = scores[sorted_ids]
kpts = kpts[sorted_ids]
p3d_xyzs = p3d_xyzs[sorted_ids]
seg_ids = seg_ids[sorted_ids]
gt_n_seg = np.zeros(shape=(self.n_class,), dtype=int)
gt_cls = np.zeros(shape=(self.n_class,), dtype=int)
gt_cls_dist = np.zeros(shape=(self.n_class,), dtype=float)
uids = np.unique(seg_ids).tolist()
for uid in uids:
if uid == 0:
continue
gt_cls[uid] = 1
gt_n_seg[uid] = np.sum(seg_ids == uid)
gt_cls_dist[uid] = np.sum(seg_ids == uid) / np.sum(
seg_ids < self.n_class - 1) # [valid_id / total_valid_id]
gt_cls[0] = 0
img = self.read_image(image_name=img_name)
if self.image_dim == 1:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = img[..., None].astype(float) / 255.
else:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(float) / 255.
return {
'descriptors': descs,
'scores': scores,
'keypoints': kpts,
'image_size': image_size,
'norm_keypoints': normalize_size(x=kpts, size=image_size),
'gt_seg': seg_ids,
'gt_cls': gt_cls,
'gt_cls_dist': gt_cls_dist,
'gt_n_seg': gt_n_seg,
'file_name': img_name,
'prefix_name': self.image_prefix,
'image': [img],
'mean_xyz': self.mean_xyz,
'scale_xyz': self.scale_xyz,
'gt_sc': p3d_xyzs,
'gt_norm_sc': (p3d_xyzs - self.mean_xyz) / self.scale_xyz
}
def __getitem__(self, idx):
if self.train:
return self.get_item_train(idx=idx)
else:
return self.get_item_test(idx=idx)
def __len__(self):
return len(self.img_fns)
def read_image(self, image_name):
return cv2.imread(osp.join(self.dataset_path, image_name))
def jitter_augmentation(self, img, params):
brightness, contrast, saturation, hue = params
p = np.random.randint(0, 20) / 20
b = brightness[0] + (brightness[1] - brightness[0]) / 20 * p
img = tvf.adjust_brightness(img=img, brightness_factor=b)
p = np.random.randint(0, 20) / 20
c = contrast[0] + (contrast[1] - contrast[0]) / 20 * p
img = tvf.adjust_contrast(img=img, contrast_factor=c)
p = np.random.randint(0, 20) / 20
s = saturation[0] + (saturation[1] - saturation[0]) / 20 * p
img = tvf.adjust_saturation(img=img, saturation_factor=s)
p = np.random.randint(0, 20) / 20
h = hue[0] + (hue[1] - hue[0]) / 20 * p
img = tvf.adjust_hue(img=img, hue_factor=h)
return img
def random_points(self, n, d, h, w):
desc = np.random.random((n, d))
desc = desc / np.linalg.norm(desc, ord=2, axis=1)[..., None]
xs = np.random.randint(0, w - 1, size=(n, 1))
ys = np.random.randint(0, h - 1, size=(n, 1))
kpts = np.hstack([xs, ys])
return desc, kpts
def random_points_from_reference(self, n, ref_kpts, ref_segs, ref_xyzs, radius=5):
n_ref = ref_kpts.shape[0]
if n_ref < n:
ref_ids = np.random.choice([i for i in range(n_ref)], size=n).tolist()
else:
ref_ids = [i for i in range(n)]
new_xs = []
new_ys = []
# new_descs = []
new_segs = []
new_xyzs = []
for i in ref_ids:
nx = np.random.randint(-radius, radius) + ref_kpts[i, 0]
ny = np.random.randint(-radius, radius) + ref_kpts[i, 1]
new_xs.append(nx)
new_ys.append(ny)
# new_descs.append(ref_descs[i])
new_segs.append(ref_segs[i])
new_xyzs.append(ref_xyzs[i])
new_xs = np.array(new_xs).reshape(n, 1)
new_ys = np.array(new_ys).reshape(n, 1)
new_segs = np.array(new_segs).reshape(n, )
new_kpts = np.hstack([new_xs, new_ys])
# new_descs = np.array(new_descs).reshape(n, -1)
new_xyzs = np.array(new_xyzs)
return new_kpts, new_segs, new_xyzs
|