File size: 8,638 Bytes
63f3cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File   pram -> extract_features.py
@IDE    PyCharm
@Author fx221@cam.ac.uk
@Date   07/02/2024 14:49
=================================================='''
import os
import os.path as osp
import h5py
import numpy as np
import progressbar
import yaml
import torch
import cv2
import torch.utils.data as Data
from tqdm import tqdm
from types import SimpleNamespace
import logging
import pprint
from pathlib import Path
import argparse
from nets.sfd2 import ResNet4x, extract_sfd2_return
from nets.superpoint import SuperPoint, extract_sp_return

confs = {
    'superpoint-n4096': {
        'output': 'feats-superpoint-n4096',
        'model': {
            'name': 'superpoint',
            'outdim': 256,
            'use_stability': False,
            'nms_radius': 3,
            'max_keypoints': 4096,
            'conf_th': 0.005,
            'multiscale': False,
            'scales': [1.0],
            'model_fn': osp.join(os.getcwd(),
                                 "weights/superpoint_v1.pth"),
        },
        'preprocessing': {
            'grayscale': True,
            'resize_max': False,
        },
    },

    'resnet4x-20230511-210205-pho-0005': {
        'output': 'feats-resnet4x-20230511-210205-pho-0005',
        'model': {
            'outdim': 128,
            'name': 'resnet4x',
            'use_stability': False,
            'max_keypoints': 4096,
            'conf_th': 0.005,
            'multiscale': False,
            'scales': [1.0],
            'model_fn': osp.join(os.getcwd(),
                                 "weights/sfd2_20230511_210205_resnet4x.79.pth"),
        },
        'preprocessing': {
            'grayscale': False,
            'resize_max': False,
        },
        'mask': False,
    },

    'sfd2': {
        'output': 'feats-sfd2',
        'model': {
            'outdim': 128,
            'name': 'resnet4x',
            'use_stability': False,
            'max_keypoints': 4096,
            'conf_th': 0.005,
            'multiscale': False,
            'scales': [1.0],
            'model_fn': osp.join(os.getcwd(),
                                 "weights/sfd2_20230511_210205_resnet4x.79.pth"),
        },
        'preprocessing': {
            'grayscale': False,
            'resize_max': False,
        },
        'mask': False,
    },
}


class ImageDataset(Data.Dataset):
    default_conf = {
        'globs': ['*.jpg', '*.png', '*.jpeg', '*.JPG', '*.PNG'],
        'grayscale': False,
        'resize_max': None,
        'resize_force': False,
    }

    def __init__(self, root, conf, image_list=None,
                 mask_root=None):
        self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
        self.root = root

        self.paths = []
        if image_list is None:
            for g in conf.globs:
                self.paths += list(Path(root).glob('**/' + g))
            if len(self.paths) == 0:
                raise ValueError(f'Could not find any image in root: {root}.')
            self.paths = [i.relative_to(root) for i in self.paths]
        else:
            with open(image_list, "r") as f:
                lines = f.readlines()
                for l in lines:
                    l = l.strip()
                    self.paths.append(Path(l))

        logging.info(f'Found {len(self.paths)} images in root {root}.')

        if mask_root is not None:
            self.mask_root = mask_root
        else:
            self.mask_root = None

    def __getitem__(self, idx):
        path = self.paths[idx]
        if self.conf.grayscale:
            mode = cv2.IMREAD_GRAYSCALE
        else:
            mode = cv2.IMREAD_COLOR
        image = cv2.imread(str(self.root / path), mode)
        if not self.conf.grayscale:
            image = image[:, :, ::-1]  # BGR to RGB
        if image is None:
            raise ValueError(f'Cannot read image {str(path)}.')
        image = image.astype(np.float32)
        size = image.shape[:2][::-1]
        w, h = size

        if self.conf.resize_max and (self.conf.resize_force
                                     or max(w, h) > self.conf.resize_max):
            scale = self.conf.resize_max / max(h, w)
            h_new, w_new = int(round(h * scale)), int(round(w * scale))
            image = cv2.resize(
                image, (w_new, h_new), interpolation=cv2.INTER_CUBIC)

        if self.conf.grayscale:
            image = image[None]
        else:
            image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
        image = image / 255.

        data = {
            'name': str(path),
            'image': image,
            'original_size': np.array(size),
        }

        if self.mask_root is not None:
            mask_path = Path(str(path).replace("jpg", "png"))
            if osp.exists(mask_path):
                mask = cv2.imread(str(self.mask_root / mask_path))
                mask = cv2.resize(mask, dsize=(image.shape[2], image.shape[1]), interpolation=cv2.INTER_NEAREST)
            else:
                mask = np.zeros(shape=(image.shape[1], image.shape[2], 3), dtype=np.uint8)

            data['mask'] = mask

        return data

    def __len__(self):
        return len(self.paths)


def get_model(model_name, weight_path, outdim=128, **kwargs):
    if model_name == 'superpoint':
        model = SuperPoint(config={
            'descriptor_dim': 256,
            'nms_radius': 4,
            'keypoint_threshold': 0.005,
            'max_keypoints': -1,
            'remove_borders': 4,
            'weight_path': weight_path,
        }).eval()

        extractor = extract_sp_return

    if model_name == 'resnet4x':
        model = ResNet4x(outdim=outdim).eval()
        model.load_state_dict(torch.load(weight_path)['state_dict'], strict=True)
        extractor = extract_sfd2_return

    return model, extractor


@torch.no_grad()
def main(conf, image_dir, export_dir):
    logging.info('Extracting local features with configuration:'
                 f'\n{pprint.pformat(conf)}')
    model, extractor = get_model(model_name=conf['model']['name'], weight_path=conf["model"]["model_fn"],
                                 use_stability=conf['model']['use_stability'], outdim=conf['model']['outdim'])
    model = model.cuda()
    loader = ImageDataset(image_dir,
                          conf['preprocessing'],
                          image_list=args.image_list,
                          mask_root=None)
    loader = torch.utils.data.DataLoader(loader, num_workers=4)

    os.makedirs(export_dir, exist_ok=True)
    feature_path = Path(export_dir, conf['output'] + '.h5')
    feature_path.parent.mkdir(exist_ok=True, parents=True)
    feature_file = h5py.File(str(feature_path), 'a')

    with tqdm(total=len(loader)) as t:
        for idx, data in enumerate(loader):
            t.update()
            pred = extractor(model, img=data["image"],
                             topK=conf["model"]["max_keypoints"],
                             mask=None,
                             conf_th=conf["model"]["conf_th"],
                             scales=conf["model"]["scales"],
                             )

            # pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
            pred['descriptors'] = pred['descriptors'].transpose()

            t.set_postfix(npoints=pred['keypoints'].shape[0])
            # print(pred['keypoints'].shape)

            pred['image_size'] = original_size = data['original_size'][0].numpy()
            # pred['descriptors'] = pred['descriptors'].T
            if 'keypoints' in pred.keys():
                size = np.array(data['image'].shape[-2:][::-1])
                scales = (original_size / size).astype(np.float32)
                pred['keypoints'] = (pred['keypoints'] + .5) * scales[None] - .5

            grp = feature_file.create_group(data['name'][0])
            for k, v in pred.items():
                # print(k, v.shape)
                grp.create_dataset(k, data=v)

            del pred

    feature_file.close()
    logging.info('Finished exporting features.')

    return feature_path


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--image_dir', type=Path, required=True)
    parser.add_argument('--image_list', type=str, default=None)
    parser.add_argument('--mask_dir', type=Path, default=None)
    parser.add_argument('--export_dir', type=Path, required=True)
    parser.add_argument('--conf', type=str, required=True, choices=list(confs.keys()))
    args = parser.parse_args()
    main(confs[args.conf], args.image_dir, args.export_dir)