Spaces:
Running
Running
File size: 8,638 Bytes
63f3cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> extract_features.py
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 07/02/2024 14:49
=================================================='''
import os
import os.path as osp
import h5py
import numpy as np
import progressbar
import yaml
import torch
import cv2
import torch.utils.data as Data
from tqdm import tqdm
from types import SimpleNamespace
import logging
import pprint
from pathlib import Path
import argparse
from nets.sfd2 import ResNet4x, extract_sfd2_return
from nets.superpoint import SuperPoint, extract_sp_return
confs = {
'superpoint-n4096': {
'output': 'feats-superpoint-n4096',
'model': {
'name': 'superpoint',
'outdim': 256,
'use_stability': False,
'nms_radius': 3,
'max_keypoints': 4096,
'conf_th': 0.005,
'multiscale': False,
'scales': [1.0],
'model_fn': osp.join(os.getcwd(),
"weights/superpoint_v1.pth"),
},
'preprocessing': {
'grayscale': True,
'resize_max': False,
},
},
'resnet4x-20230511-210205-pho-0005': {
'output': 'feats-resnet4x-20230511-210205-pho-0005',
'model': {
'outdim': 128,
'name': 'resnet4x',
'use_stability': False,
'max_keypoints': 4096,
'conf_th': 0.005,
'multiscale': False,
'scales': [1.0],
'model_fn': osp.join(os.getcwd(),
"weights/sfd2_20230511_210205_resnet4x.79.pth"),
},
'preprocessing': {
'grayscale': False,
'resize_max': False,
},
'mask': False,
},
'sfd2': {
'output': 'feats-sfd2',
'model': {
'outdim': 128,
'name': 'resnet4x',
'use_stability': False,
'max_keypoints': 4096,
'conf_th': 0.005,
'multiscale': False,
'scales': [1.0],
'model_fn': osp.join(os.getcwd(),
"weights/sfd2_20230511_210205_resnet4x.79.pth"),
},
'preprocessing': {
'grayscale': False,
'resize_max': False,
},
'mask': False,
},
}
class ImageDataset(Data.Dataset):
default_conf = {
'globs': ['*.jpg', '*.png', '*.jpeg', '*.JPG', '*.PNG'],
'grayscale': False,
'resize_max': None,
'resize_force': False,
}
def __init__(self, root, conf, image_list=None,
mask_root=None):
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
self.root = root
self.paths = []
if image_list is None:
for g in conf.globs:
self.paths += list(Path(root).glob('**/' + g))
if len(self.paths) == 0:
raise ValueError(f'Could not find any image in root: {root}.')
self.paths = [i.relative_to(root) for i in self.paths]
else:
with open(image_list, "r") as f:
lines = f.readlines()
for l in lines:
l = l.strip()
self.paths.append(Path(l))
logging.info(f'Found {len(self.paths)} images in root {root}.')
if mask_root is not None:
self.mask_root = mask_root
else:
self.mask_root = None
def __getitem__(self, idx):
path = self.paths[idx]
if self.conf.grayscale:
mode = cv2.IMREAD_GRAYSCALE
else:
mode = cv2.IMREAD_COLOR
image = cv2.imread(str(self.root / path), mode)
if not self.conf.grayscale:
image = image[:, :, ::-1] # BGR to RGB
if image is None:
raise ValueError(f'Cannot read image {str(path)}.')
image = image.astype(np.float32)
size = image.shape[:2][::-1]
w, h = size
if self.conf.resize_max and (self.conf.resize_force
or max(w, h) > self.conf.resize_max):
scale = self.conf.resize_max / max(h, w)
h_new, w_new = int(round(h * scale)), int(round(w * scale))
image = cv2.resize(
image, (w_new, h_new), interpolation=cv2.INTER_CUBIC)
if self.conf.grayscale:
image = image[None]
else:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
image = image / 255.
data = {
'name': str(path),
'image': image,
'original_size': np.array(size),
}
if self.mask_root is not None:
mask_path = Path(str(path).replace("jpg", "png"))
if osp.exists(mask_path):
mask = cv2.imread(str(self.mask_root / mask_path))
mask = cv2.resize(mask, dsize=(image.shape[2], image.shape[1]), interpolation=cv2.INTER_NEAREST)
else:
mask = np.zeros(shape=(image.shape[1], image.shape[2], 3), dtype=np.uint8)
data['mask'] = mask
return data
def __len__(self):
return len(self.paths)
def get_model(model_name, weight_path, outdim=128, **kwargs):
if model_name == 'superpoint':
model = SuperPoint(config={
'descriptor_dim': 256,
'nms_radius': 4,
'keypoint_threshold': 0.005,
'max_keypoints': -1,
'remove_borders': 4,
'weight_path': weight_path,
}).eval()
extractor = extract_sp_return
if model_name == 'resnet4x':
model = ResNet4x(outdim=outdim).eval()
model.load_state_dict(torch.load(weight_path)['state_dict'], strict=True)
extractor = extract_sfd2_return
return model, extractor
@torch.no_grad()
def main(conf, image_dir, export_dir):
logging.info('Extracting local features with configuration:'
f'\n{pprint.pformat(conf)}')
model, extractor = get_model(model_name=conf['model']['name'], weight_path=conf["model"]["model_fn"],
use_stability=conf['model']['use_stability'], outdim=conf['model']['outdim'])
model = model.cuda()
loader = ImageDataset(image_dir,
conf['preprocessing'],
image_list=args.image_list,
mask_root=None)
loader = torch.utils.data.DataLoader(loader, num_workers=4)
os.makedirs(export_dir, exist_ok=True)
feature_path = Path(export_dir, conf['output'] + '.h5')
feature_path.parent.mkdir(exist_ok=True, parents=True)
feature_file = h5py.File(str(feature_path), 'a')
with tqdm(total=len(loader)) as t:
for idx, data in enumerate(loader):
t.update()
pred = extractor(model, img=data["image"],
topK=conf["model"]["max_keypoints"],
mask=None,
conf_th=conf["model"]["conf_th"],
scales=conf["model"]["scales"],
)
# pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
pred['descriptors'] = pred['descriptors'].transpose()
t.set_postfix(npoints=pred['keypoints'].shape[0])
# print(pred['keypoints'].shape)
pred['image_size'] = original_size = data['original_size'][0].numpy()
# pred['descriptors'] = pred['descriptors'].T
if 'keypoints' in pred.keys():
size = np.array(data['image'].shape[-2:][::-1])
scales = (original_size / size).astype(np.float32)
pred['keypoints'] = (pred['keypoints'] + .5) * scales[None] - .5
grp = feature_file.create_group(data['name'][0])
for k, v in pred.items():
# print(k, v.shape)
grp.create_dataset(k, data=v)
del pred
feature_file.close()
logging.info('Finished exporting features.')
return feature_path
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image_dir', type=Path, required=True)
parser.add_argument('--image_list', type=str, default=None)
parser.add_argument('--mask_dir', type=Path, default=None)
parser.add_argument('--export_dir', type=Path, required=True)
parser.add_argument('--conf', type=str, required=True, choices=list(confs.keys()))
args = parser.parse_args()
main(confs[args.conf], args.image_dir, args.export_dir)
|