File size: 15,986 Bytes
63f3cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File   pram -> tracker
@IDE    PyCharm
@Author fx221@cam.ac.uk
@Date   29/02/2024 16:58
=================================================='''
import time
import cv2
import numpy as np
import torch
import pycolmap
from localization.frame import Frame
from localization.base_model import dynamic_load
import localization.matchers as matchers
from localization.match_features_batch import confs as matcher_confs
from recognition.vis_seg import vis_seg_point, generate_color_dic, vis_inlier, plot_matches
from tools.common import resize_img


class Tracker:
    def __init__(self, locMap, matcher, config):
        self.locMap = locMap
        self.matcher = matcher
        self.config = config
        self.loc_config = config['localization']

        self.lost = True

        self.curr_frame = None
        self.last_frame = None

        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        Model = dynamic_load(matchers, 'nearest_neighbor')
        self.nn_matcher = Model(matcher_confs['NNM']['model']).eval().to(device)

    def run(self, frame: Frame):
        print('Start tracking...')
        show = self.config['localization']['show']
        self.curr_frame = frame
        ref_img = self.last_frame.image
        curr_img = self.curr_frame.image
        q_kpts = frame.keypoints

        t_start = time.time()
        ret = self.track_last_frame(curr_frame=self.curr_frame, last_frame=self.last_frame)
        self.curr_frame.time_loc = self.curr_frame.time_loc + time.time() - t_start

        if show:
            curr_matched_kpts = ret['matched_keypoints']
            ref_matched_kpts = ret['matched_ref_keypoints']
            img_loc_matching = plot_matches(img1=curr_img, img2=ref_img,
                                            pts1=curr_matched_kpts,
                                            pts2=ref_matched_kpts,
                                            inliers=np.array([True for i in range(curr_matched_kpts.shape[0])]),
                                            radius=9, line_thickness=3)
            self.curr_frame.image_matching = img_loc_matching

            q_ref_img_matching = resize_img(img_loc_matching, nh=512)

        if not ret['success']:
            show_text = 'Tracking FAILED!'
            img_inlier = vis_inlier(img=curr_img, kpts=curr_matched_kpts,
                                    inliers=[False for i in range(curr_matched_kpts.shape[0])], radius=9 + 2,
                                    thickness=2)
            q_img_inlier = cv2.putText(img=img_inlier, text=show_text, org=(30, 30),
                                       fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255),
                                       thickness=2, lineType=cv2.LINE_AA)

            q_img_loc = np.hstack([resize_img(q_ref_img_matching, nh=512), resize_img(q_img_inlier, nh=512)])

            cv2.imshow('loc', q_img_loc)
            key = cv2.waitKey(self.loc_config['show_time'])
            if key == ord('q'):
                cv2.destroyAllWindows()
                exit(0)
            return False

        ret['matched_scene_name'] = self.last_frame.scene_name
        success = self.verify_and_update(q_frame=self.curr_frame, ret=ret)

        if not success:
            return False

        if ret['num_inliers'] < 256:
            # refinement is necessary for tracking last frame
            t_start = time.time()
            ret = self.locMap.sub_maps[self.last_frame.matched_scene_name].refine_pose(self.curr_frame,
                                                                                       refinement_method=
                                                                                       self.loc_config[
                                                                                           'refinement_method'])
            self.curr_frame.time_ref = self.curr_frame.time_ref + time.time() - t_start
            ret['matched_scene_name'] = self.last_frame.scene_name
            success = self.verify_and_update(q_frame=self.curr_frame, ret=ret)

        if show:
            q_err, t_err = self.curr_frame.compute_pose_error()
            num_matches = ret['matched_keypoints'].shape[0]
            num_inliers = ret['num_inliers']
            show_text = 'Tracking, k/m/i: {:d}/{:d}/{:d}'.format(q_kpts.shape[0], num_matches, num_inliers)
            q_img_inlier = vis_inlier(img=curr_img, kpts=ret['matched_keypoints'], inliers=ret['inliers'],
                                      radius=9 + 2, thickness=2)
            q_img_inlier = cv2.putText(img=q_img_inlier, text=show_text, org=(30, 30),
                                       fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255),
                                       thickness=2, lineType=cv2.LINE_AA)
            show_text = 'r_err:{:.2f}, t_err:{:.2f}'.format(q_err, t_err)
            q_img_inlier = cv2.putText(img=q_img_inlier, text=show_text, org=(30, 80),
                                       fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255),
                                       thickness=2, lineType=cv2.LINE_AA)
            self.curr_frame.image_inlier = q_img_inlier

            q_img_loc = np.hstack([resize_img(q_ref_img_matching, nh=512), resize_img(q_img_inlier, nh=512)])

            cv2.imshow('loc', q_img_loc)
            key = cv2.waitKey(self.loc_config['show_time'])
            if key == ord('q'):
                cv2.destroyAllWindows()
                exit(0)

        self.lost = success
        return success

    def verify_and_update(self, q_frame: Frame, ret: dict):
        num_matches = ret['matched_keypoints'].shape[0]
        num_inliers = ret['num_inliers']

        q_frame.qvec = ret['qvec']
        q_frame.tvec = ret['tvec']

        q_err, t_err = q_frame.compute_pose_error()

        if num_inliers < self.loc_config['min_inliers']:
            print_text = 'Failed due to insufficient {:d} inliers,  q_err: {:.2f}, t_err: {:.2f}'.format(
                ret['num_inliers'], q_err, t_err)
            print(print_text)
            q_frame.tracking_status = False
            q_frame.clear_localization_track()
            return False
        else:
            print_text = 'Succeed! Find {}/{} 2D-3D inliers,q_err: {:.2f}, t_err: {:.2f}'.format(
                num_inliers, num_matches, q_err, t_err)
            print(print_text)
            q_frame.tracking_status = True

            self.update_current_frame(curr_frame=q_frame, ret=ret)
            return True

    def update_current_frame(self, curr_frame: Frame, ret: dict):
        curr_frame.qvec = ret['qvec']
        curr_frame.tvec = ret['tvec']

        curr_frame.matched_scene_name = ret['matched_scene_name']
        curr_frame.reference_frame_id = ret['reference_frame_id']
        inliers = np.array(ret['inliers'])

        curr_frame.matched_keypoints = ret['matched_keypoints'][inliers]
        curr_frame.matched_xyzs = ret['matched_xyzs'][inliers]
        curr_frame.matched_point3D_ids = ret['matched_point3D_ids'][inliers]
        curr_frame.matched_keypoint_ids = ret['matched_keypoint_ids'][inliers]
        curr_frame.matched_sids = ret['matched_sids'][inliers]

    def track_last_frame(self, curr_frame: Frame, last_frame: Frame):
        curr_kpts = curr_frame.keypoints[:, :2]
        curr_scores = curr_frame.keypoints[:, 2]
        curr_descs = curr_frame.descriptors
        curr_kpt_ids = np.arange(curr_kpts.shape[0])

        last_kpts = last_frame.keypoints[:, :2]
        last_scores = last_frame.keypoints[:, 2]
        last_descs = last_frame.descriptors
        last_xyzs = last_frame.xyzs
        last_point3D_ids = last_frame.point3D_ids
        last_sids = last_frame.seg_ids

        # '''
        indices = self.matcher({
            'descriptors0': torch.from_numpy(curr_descs)[None].cuda().float(),
            'keypoints0': torch.from_numpy(curr_kpts)[None].cuda().float(),
            'scores0': torch.from_numpy(curr_scores)[None].cuda().float(),
            'image_shape0': (1, 3, curr_frame.camera.width, curr_frame.camera.height),

            'descriptors1': torch.from_numpy(last_descs)[None].cuda().float(),
            'keypoints1': torch.from_numpy(last_kpts)[None].cuda().float(),
            'scores1': torch.from_numpy(last_scores)[None].cuda().float(),
            'image_shape1': (1, 3, last_frame.camera.width, last_frame.camera.height),
        })['matches0'][0].cpu().numpy()
        '''

        indices = self.nn_matcher({
            'descriptors0': torch.from_numpy(curr_descs.transpose()).float().cuda()[None],
            'descriptors1': torch.from_numpy(last_descs.transpose()).float().cuda()[None],
        })['matches0'][0].cpu().numpy()
        '''

        valid = (indices >= 0)

        matched_point3D_ids = last_point3D_ids[indices[valid]]
        point3D_mask = (matched_point3D_ids >= 0)
        matched_point3D_ids = matched_point3D_ids[point3D_mask]
        matched_sids = last_sids[indices[valid]][point3D_mask]

        matched_kpts = curr_kpts[valid][point3D_mask]
        matched_kpt_ids = curr_kpt_ids[valid][point3D_mask]
        matched_xyzs = last_xyzs[indices[valid]][point3D_mask]
        matched_last_kpts = last_kpts[indices[valid]][point3D_mask]

        print('Tracking: {:d} matches from {:d}-{:d} kpts'.format(matched_kpts.shape[0], curr_kpts.shape[0],
                                                                  last_kpts.shape[0]))

        # print('tracking: ', matched_kpts.shape, matched_xyzs.shape)
        ret = pycolmap.absolute_pose_estimation(matched_kpts + 0.5, matched_xyzs,
                                                curr_frame.camera,
                                                estimation_options={
                                                    "ransac": {"max_error": self.config['localization']['threshold']}},
                                                refinement_options={},
                                                # max_error_px=self.config['localization']['threshold']
                                                )
        if ret is None:
            ret = {'success': False, }
        else:
            ret['success'] = True
            ret['qvec'] = ret['cam_from_world'].rotation.quat[[3, 0, 1, 2]]
            ret['tvec'] = ret['cam_from_world'].translation

        ret['matched_keypoints'] = matched_kpts
        ret['matched_keypoint_ids'] = matched_kpt_ids
        ret['matched_ref_keypoints'] = matched_last_kpts
        ret['matched_xyzs'] = matched_xyzs
        ret['matched_point3D_ids'] = matched_point3D_ids
        ret['matched_sids'] = matched_sids
        ret['reference_frame_id'] = last_frame.reference_frame_id
        ret['matched_scene_name'] = last_frame.matched_scene_name
        return ret

    def track_last_frame_fast(self, curr_frame: Frame, last_frame: Frame):
        curr_kpts = curr_frame.keypoints[:, :2]
        curr_scores = curr_frame.keypoints[:, 2]
        curr_descs = curr_frame.descriptors
        curr_kpt_ids = np.arange(curr_kpts.shape[0])

        last_point3D_ids = last_frame.point3D_ids
        point3D_mask = (last_point3D_ids >= 0)
        last_kpts = last_frame.keypoints[:, :2][point3D_mask]
        last_scores = last_frame.keypoints[:, 2][point3D_mask]
        last_descs = last_frame.descriptors[point3D_mask]
        last_xyzs = last_frame.xyzs[point3D_mask]
        last_sids = last_frame.seg_ids[point3D_mask]

        minx = np.min(last_kpts[:, 0])
        maxx = np.max(last_kpts[:, 0])
        miny = np.min(last_kpts[:, 1])
        maxy = np.max(last_kpts[:, 1])
        curr_mask = (curr_kpts[:, 0] >= minx) * (curr_kpts[:, 0] <= maxx) * (curr_kpts[:, 1] >= miny) * (
                curr_kpts[:, 1] <= maxy)

        curr_kpts = curr_kpts[curr_mask]
        curr_scores = curr_scores[curr_mask]
        curr_descs = curr_descs[curr_mask]
        curr_kpt_ids = curr_kpt_ids[curr_mask]
        # '''
        indices = self.matcher({
            'descriptors0': torch.from_numpy(curr_descs)[None].cuda().float(),
            'keypoints0': torch.from_numpy(curr_kpts)[None].cuda().float(),
            'scores0': torch.from_numpy(curr_scores)[None].cuda().float(),
            'image_shape0': (1, 3, curr_frame.camera.width, curr_frame.camera.height),

            'descriptors1': torch.from_numpy(last_descs)[None].cuda().float(),
            'keypoints1': torch.from_numpy(last_kpts)[None].cuda().float(),
            'scores1': torch.from_numpy(last_scores)[None].cuda().float(),
            'image_shape1': (1, 3, last_frame.camera.width, last_frame.camera.height),
        })['matches0'][0].cpu().numpy()
        '''

        indices = self.nn_matcher({
            'descriptors0': torch.from_numpy(curr_descs.transpose()).float().cuda()[None],
            'descriptors1': torch.from_numpy(last_descs.transpose()).float().cuda()[None],
        })['matches0'][0].cpu().numpy()
        '''

        valid = (indices >= 0)

        matched_point3D_ids = last_point3D_ids[indices[valid]]
        matched_sids = last_sids[indices[valid]]

        matched_kpts = curr_kpts[valid]
        matched_kpt_ids = curr_kpt_ids[valid]
        matched_xyzs = last_xyzs[indices[valid]]
        matched_last_kpts = last_kpts[indices[valid]]

        print('Tracking: {:d} matches from {:d}-{:d} kpts'.format(matched_kpts.shape[0], curr_kpts.shape[0],
                                                                  last_kpts.shape[0]))

        # print('tracking: ', matched_kpts.shape, matched_xyzs.shape)
        ret = pycolmap.absolute_pose_estimation(matched_kpts + 0.5, matched_xyzs,
                                                curr_frame.camera._asdict(),
                                                max_error_px=self.config['localization']['threshold'])

        ret['matched_keypoints'] = matched_kpts
        ret['matched_keypoint_ids'] = matched_kpt_ids
        ret['matched_ref_keypoints'] = matched_last_kpts
        ret['matched_xyzs'] = matched_xyzs
        ret['matched_point3D_ids'] = matched_point3D_ids
        ret['matched_sids'] = matched_sids
        ret['reference_frame_id'] = last_frame.reference_frame_id
        ret['matched_scene_name'] = last_frame.matched_scene_name
        return ret

    @torch.no_grad()
    def match_frame(self, frame: Frame, reference_frame: Frame):
        print('match: ', frame.keypoints.shape, reference_frame.keypoints.shape)
        matches = self.matcher({
            'descriptors0': torch.from_numpy(frame.descriptors)[None].cuda().float(),
            'keypoints0': torch.from_numpy(frame.keypoints[:, :2])[None].cuda().float(),
            'scores0': torch.from_numpy(frame.keypoints[:, 2])[None].cuda().float(),
            'image_shape0': (1, 3, frame.image_size[0], frame.image_size[1]),

            # 'descriptors0': torch.from_numpy(reference_frame.descriptors)[None].cuda().float(),
            # 'keypoints0': torch.from_numpy(reference_frame.keypoints[:, :2])[None].cuda().float(),
            # 'scores0': torch.from_numpy(reference_frame.keypoints[:, 2])[None].cuda().float(),
            # 'image_shape0': (1, 3, reference_frame.image_size[0], reference_frame.image_size[1]),

            'descriptors1': torch.from_numpy(reference_frame.descriptors)[None].cuda().float(),
            'keypoints1': torch.from_numpy(reference_frame.keypoints[:, :2])[None].cuda().float(),
            'scores1': torch.from_numpy(reference_frame.keypoints[:, 2])[None].cuda().float(),
            'image_shape1': (1, 3, reference_frame.image_size[0], reference_frame.image_size[1]),

        })['matches0'][0].cpu().numpy()

        ids1 = np.arange(matches.shape[0])
        ids2 = matches
        ids1 = ids1[matches >= 0]
        ids2 = ids2[matches >= 0]

        mask_p3ds = reference_frame.points3d_mask[ids2]
        ids1 = ids1[mask_p3ds]
        ids2 = ids2[mask_p3ds]

        return ids1, ids2